湖北省襄阳五中2015届高考数学模拟试卷(理科)(5月份)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,集合,则(∁UA)∩B=()A.(0,+∞)B.(0,1]C.(1,+∞)D.(1,2)2.(5分)复数z=|(﹣i)i|+i5(i为虚数单位),则复数z的共轭复数为()A.2﹣iB.2+iC.4﹣iD.4+i3.(5分)如图是一个无盖器皿的三视图,正视图、侧视图和俯视图中的正方形边长为2,正视图、侧视图中的虚线都是半圆,则该器皿的表面积是()A.π+24B.π+20C.2π+24D.2π+204.(5分)下列四个结论中正确的结论个数是()①命题“若p,则q”的逆命题是“若q,则p”.②设,是两个非零向量,则“∥”是“•=||•||”成立的充分不必要条件.③某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是分层抽样.④设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,回归方程为=0.85x﹣85.71,则可以得出结论:该大学某女生身高增加1cm,则其体重约增加0.85kg.A.1B.2C.3D.45.(5分)已知向量=(1,2),=(2,﹣3).若向量满足(+)∥,⊥(+),则=()A.(,)B.(﹣,﹣)C.(,)D.(﹣,﹣)6.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()1A.B.C.D.7.(5分)若数列{an}满足=0,n∈N*,p为非零常数,则称数列{an}为“梦想数列”.已知正项数列为“梦想数列”,且b1b2b3…b99=299,则b8+b92的最小值是()A.2B.4C.6D.88.(5分)若实数x、y满足不等式组则z=|x|+2y的最大值是()A.10B.11C.13D.149.(5分)已知双曲线﹣=1(a>0,b>0的左、右焦点分别为F1、F2,以F1F2为直径的圆被直线+=1截得的弦长为a,则双曲线的离心率为()A.3B.2C.D.10.(5分)已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+>0,则关于x的函数g(x)=f(x)+的零点个数为()A.0B.1C.2D.3二、填空题:本大题共4小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)11.(5分)若某程序框图如图所示,则该程序运行后输出的值为.212.(5分)设n=10sinxdx,则(﹣)n展开式中的常数项为(用数字作答)13.(5分)关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学,没人随机写下一个都小于1的正实数对(x,y);再统计两数能与1构成钝角三角形三边的数对(x,y)的个数m;最后再根据统计数m估计π的值.假如统计结果是m=34,那么可以估计π≈(用分数表示).14.(5分)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:(Ⅰ)b2014是数列{an}中的第项;(Ⅱ)b2n﹣1=.(用n表示)(二)选考题(请考生在第15、16两题中任选一题作答.如果全选,则按第15题作答结果计分)【选修4-1:几何证明选讲】15.(5分)如图,PB为△ABC外接圆O的切线,BD平分∠PBC,交圆O于D,C,D,P共线.若AB⊥BD,PC⊥PB,PD=1,则圆O的半径是.3【选修4-4:坐标系与参数方程】16.在直角坐标系xOy中,曲线C1的参数方程是,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρsin(θ+)=1,则两曲线交点间的距离是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在锐角△ABC中,=(1)求角A;(2)若a=,求bc的取值范围.18.(12分)已知数列{an}的前n项和为Sn,首项a1=1,且对于任意n∈N+都有nan+1=2Sn.(Ⅰ)求{an}的通项公式;(Ⅱ)设,且数列{bn}的前n项之和为Tn,求证:.19.(12分)某项选拔共有三...