电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 课时跟踪检测(五)空间两条直线的位置关系 苏教版必修2-苏教版高一必修2数学试题VIP免费

高中数学 课时跟踪检测(五)空间两条直线的位置关系 苏教版必修2-苏教版高一必修2数学试题_第1页
1/6
高中数学 课时跟踪检测(五)空间两条直线的位置关系 苏教版必修2-苏教版高一必修2数学试题_第2页
2/6
高中数学 课时跟踪检测(五)空间两条直线的位置关系 苏教版必修2-苏教版高一必修2数学试题_第3页
3/6
课时跟踪检测(五)空间两条直线的位置关系层级一学业水平达标1.分别和两条异面直线都相交的两条直线的位置关系是()A.相交B.异面C.异面或相交D.平行解析:选C如图,有相交或异面两种情况.2.一条直线与两条平行线中的一条成为异面直线,则它与另一条()A.相交B.异面C.相交或异面D.平行解析:选C如图所示的长方体ABCDA1B1C1D1中,直线AA1与直线B1C1是异面直线,与B1C1平行的直线有A1D1,AD,BC,显然直线AA1与A1D1相交,与BC异面.3.若两个三角形不在同一平面内,它们的边两两对应平行,那么这两个三角形()A.全等B.相似C.仅有一个角相等D.无法判断解析:选B由等角定理知,这两个三角形的三个角分别对应相等,所以这两个三角形相似.4.已知直线a,b,c,下列三个命题:①若a与b异面,b与c异面,则a与c异面;②若a∥b,a和c相交,则b和c也相交;③若a⊥b,a⊥c,则b∥c.其中,正确命题的个数是()A.0B.1C.2D.3解析:选A①不正确如图;②不正确,有可能相交也有可能异面;③不正确.可能平行,可能相交也可能异面.5.异面直线a,b,有a⊂α,b⊂β且α∩β=c,则直线c与a,b的关系是()A.c与a,b都相交B.c与a,b都不相交C.c至多与a,b中的一条相交D.c至少与a,b中的一条相交解析:选D若c与a,b都不相交, c与a在α内,∴a∥c.又c与b都在β内,∴b∥c.由公理4,可知a∥b,与已知条件矛盾.如图,只有以下三种情况.6.在空间四边形ABCD中,如图所示,=,=,则EH与FG的位置关系是________.解析:如图,连结BD,在△ABD中,=,则EH∥BD,同理可得FG∥BD.∴EH∥FG.答案:平行7.如图,正方体ABCDA1B1C1D1中,AC与BC1所成角的大小是________.解析:连结AD1,则AD1∥BC1.∴∠CAD1(或其补角)就是AC与BC1所成的角,连结CD1,在正方体ABCDA1B1C1D1中,AC=AD1=CD1,∴∠CAD1=60°,即AC与BC1所成的角为60°.答案:60°8.如图,在长方体ABCDA1B1C1D1中,AA1=AB=2,AD=1,点E,F,G分别是DD1,AB,CC1的中点,则异面直线A1E与GF所成的角是________.解析:如图,连结EG,GB1,可得A1B1綊EG,所以四边形A1B1GE为平行四边形,所以A1E∥B1G,连结FB1,则∠FGB1就是异面直线所成的角.因为FB1=,GB1=,FG===,所以FB=FG2+GB,即∠FGB1=90°.答案:90°9.如图所示,E,F分别是长方体A1B1C1D1ABCD的棱A1A,C1C的中点.求证:四边形B1EDF是平行四边形.证明:设Q是DD1的中点,连结EQ,QC1. E是AA1的中点,∴EQ綊A1D1.又在矩形A1B1C1D1中,A1D1綊B1C1,∴EQ綊B1C1(平行公理).∴四边形EQC1B1为平行四边形.∴B1E綊C1Q.又 Q,F是DD1,C1C两边的中点,∴QD綊C1F.∴四边形QDFC1为平行四边形.∴C1Q綊DF.∴B1E綊DF.∴四边形B1EDF为平行四边形.10.如图,在正方体ABCDA1B1C1D1中,M,N分别是棱CD,CC1的中点.求异面直线A1M与DN所成的角的大小.解:如图,过点M作ME∥DN交CC1于点E,连结A1E,则∠A1ME为异面直线A1M与DN所成的角(或其补角).设正方体的棱长为a,则A1M=a,ME=a,A1E=a,所以A1M2+ME2=A1E2,所以∠A1ME=90°,即异面直线A1M与DN所成的角为90°.层级二应试能力达标1.如图,三棱柱ABCA1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.CC1与AE共面C.AE与B1C1是异面直线D.AE与B1C1所成的角为60°解析:选C由于CC1与B1E都在平面C1B1BC内,故C1C与B1E是共面的,A错误;由于CC1在平面C1B1BC内,而AE与平面C1B1BC相交于点E,点E不在C1C上,故CC1与AE是异面直线,同理,AE与B1C1是异面直线,所以B错误,C正确;AE与B1C1所成的角就是AE与BC所成的角,又E为BC的中点,△ABC为正三角形,所以AE⊥BC,即AE与B1C1所成的角为90°,D错误.故选C.2.如图,在四面体ABCD中,M,N,P,Q,E分别是AB,BC,CD,AD,AC的中点,则下列说法中不正确的是()A.M,N,P,Q四点共面B.∠QME=∠CBDC.△BCD∽△MEQD.四边形MNPQ为梯形解析:选D由中位线定理,易知MQ∥BD,ME∥BC,QE∥CD,NP∥BD.对于A,有MQ∥NP,所以M,N,P,Q四点共面,故A说法正确;对于B,根据等角定理,得∠QME=∠CBD,故B说法正确;对于C,由等角...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 课时跟踪检测(五)空间两条直线的位置关系 苏教版必修2-苏教版高一必修2数学试题

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部