课时跟踪检测(二)圆柱、圆锥、圆台和球层级一学业水平达标1.有下列四个说法,其中正确的是()A.圆柱的母线与轴垂直B.圆锥的母线长等于底面圆直径C.圆台的母线与轴平行D.球的直径必过球心解析:选DA:圆柱的母线与轴平行;B:圆锥的母线长与底面圆的直径不具有任何关系;C:圆台的母线延长线与轴相交.故D正确.2.如图所示的图形中有()A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球解析:选B根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.3.下列说法中正确的个数是()①用一个平面去截一个圆锥得到一个圆锥和一个圆台;②圆锥中过轴的截面是一个等腰三角形;③分别以矩形(非正方形)的长和宽所在直线为旋转轴,旋转一周得到的两个几何体是两个不同的圆柱.A.0B.1C.2D.3解析:选C①中,必须用一个平行于底面的平面去截圆锥,才能得到一个圆锥和一个圆台,故①说法错误;显然②③说法正确.故说法正确的有2个.4.如图所示的几何体是由下列哪个平面图形通过旋转得到的()解析:选A由题图知平面图应是一个直角三角形和一个直角梯形构成,故A正确.5.一个直角三角形绕斜边旋转360°形成的空间几何体是()A.一个圆锥B.一个圆锥和一个圆柱C.两个圆锥D.一个圆锥和一个圆台答案:C6.将一个直角梯形绕其较短的底边所在的直线旋转一周得到一个几何体,则该几何体的结构特征是________________________________.答案:一个圆柱被挖去一个圆锥后所剩的几何体7.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这个截面把圆锥的母线分为两段的比是________.解析: 截面面积与底面面积的比为1∶3,故小圆锥与大圆锥的相似比为1∶,故小圆锥与大圆锥的母线长之比为1∶,故小圆锥与所得圆台的母线长比为1∶(-1).答案:1∶(-1)8.将边长为4cm和8cm的矩形纸片卷成一个圆柱的侧面,则圆柱的轴截面的面积为________cm2.解析:当以4cm为母线长时,设圆柱底面半径为r,则8=2πr,∴2r=.∴S轴截面=4×=(cm)2.当以8cm为母线长时,设圆柱底面半径为R,则2πR=4,2R=.∴S轴截面=8×=(cm)2.综上,圆锥的轴截面面积为cm2.答案:9.将长为4宽为3的矩形ABCD沿对角线AC折起,折起后A,B,C,D在同一个球面上吗?若在求出这个球的直径.解:因为对角线AC是直角三角形ABC和直角三角形ADC的公共斜边,所以AC的中点O到四个点的距离相等,即O为该球的球心.所以AC为球的一条直径,由勾股定理得AC==5.10.如图所示,直角梯形ABCD中,AB⊥BC,绕着CD所在直线l旋转,试画出立体图并指出几何体的结构特征.解:如图①,过A,B分别作AO1⊥CD,BO2⊥CD,垂足分别为O1,O2,则Rt△CBO2绕l旋转一周所形成的曲面围成几何体是圆锥,直角梯形O1ABO2绕l旋转一周所形成的曲面围成的几何体是圆台,Rt△ADO1绕l旋转一周所形成的曲面围成的几何体是圆锥.①②综上,所得几何体下面是一个圆锥,上面是一个圆台挖去了一个以圆台上底面为底面的圆锥.(如图②所示).层级二应试能力达标1.下列结论正确的是()A.用一个平面去截圆锥,得到一个圆锥和一个圆台B.经过球面上不同的两点只能作一个最大的圆C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D须用平行于圆锥底面的平面截才能得到圆锥和圆台,故A错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B错误;正六棱锥的侧棱长必然要大于底面边长,故C错误.故选D.2.若圆柱体被平面截成如图所示的几何体,则它的侧面展开图是()解析:选D结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A、B、C错误.3.一个正方体内接于一个球,过球心作一截面,如下图所示,则截面的可能图形是()A.①②B.②④C.①②③D.②③④解析:选C当截面平行于正方体的一个侧面时得③,当截面过正方体对角面时得②,当截面不平行于任何侧面也不过对角面时得①,但无论如何都不能得出④.4.已知半径为5的球的两个平行截面的...