第三节合情推理与演绎推理A级·基础过关|固根基|1.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C.g(x)D.-g(x)解析:选D由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).2.按照图①~图③的规律,第10个图中圆点的个数为()A.36B.40C.44D.52解析:选B因为根据图形知,第一个图有4个点,第二个图有8个点,第三个图有12个点,…,所以第10个图有10×4=40(个)点.故选B.3.有一段“三段论”推理是这样的:对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点,因为f(x)=x3在x=0处的导数值为0,所以x=0是f(x)=x3的极值点,以上推理()A.大前提错误B.小前提错误C.推理形式错误D.结论正确解析:选A大前提是“对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f′(x0)=0,且满足在x0附近左右两侧导函数值异号,那么x=x0才是函数f(x)的极值点,所以大前提错误.故选A.4.若等差数列{an}的公差为d,前n项和为Sn,则数列为等差数列,公差为.类似地,若各项均为正数的等比数列{bn}的公比为q,前n项的积为Tn,则等比数列{}的公比为()A.B.q2C.D.解析:选C根据等差数列类比可得等比数列{}的公比为,证明如下:由题意知,Tn=b1·b2·b3·…·bn=b1·b1q·b1q2·…·b1qn-1=bq1+2+…+(n-1)=bq,所以=b1q,所以等比数列{}的公比为,故选C.5.(2019届南宁市摸底联考)甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人C.甲是知识分子,乙是工人,丙是农民D.甲是农民,乙是知识分子,丙是工人解析:选C由“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.故选C.16.(2019届荆州质检)若正偶数由小到大依次排列构成一个数列,则称该数列为“正偶数列”,“正偶数列”有一个有趣的现象:①2+4=6;②8+10+12=14+16;③18+20+22+24=26+28+30;…按照这样的规律,则2018所在等式的序号为()A.29B.30C.31D.32解析:选C由题意知,每个等式中正偶数的个数组成等差数列3,5,7,…,2n+1,其前n项和Sn==n(n+2),所以S31=1023,则第31个等式中最后一个偶数是1023×2=2046,且第31个等式中含有2×31+1=63(个)偶数,故2018在第31个等式中.7.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于()A.28B.76C.123D.199解析:选C观察规律,归纳推理.观察给出的式子特点可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.8.中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算的,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如3266用算筹表示就是,则8771用算筹可表示为()解析:选A由题意知8771用算筹可表示为,故选A.9.仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○●…,若依此规律续续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.解析:进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|…,则前n组两种圈的总数是f(n)=2+3+4+…+(n+1)=,易知f(14)=119,f(15)=135,故n=14,●的个数是14×1=14.答案:1410.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33...