第10章计数原理、概率、随机变量及其分布第1讲A组基础关1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15D.21答案B解析当x=2时,x≠y,点的个数为1×7=7(个).当x≠2时,由P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).2.(2018·郑州调研)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则不同的监考方法有()A.8种B.9种C.10种D.11种答案B解析设教1,2,3,4班的教师分别为1,2,3,4,满足题意的监考方法有共9种不同的监考方法.3.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个答案A解析将和等于11的两数放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个数,有C=2种取法,所以这样的子集共有2×2×2×2×2=32个.4.(2018·河北唐山一模)用两个1,一个2,一个0,可组成不同四位数的个数是()A.18B.16C.12D.9答案D解析千位上是1的四位数有3×2×1=6个,千位上是2的四位数有2110、2101、2011,共3个,由加法计数原理可得,可组成不同四位数的个数是6+3=9.5.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对答案C解析解法一:与正方体的一个面上的一条对角线成60°角的对角线有8条,故共有8对,正方体的12条面对角线共有8×12=96(对),且每对均重复计算一次,故共有=48(对).解法二:正方体的面对角线共有12条,两条为一对,共有12×11÷2=66(对).同一面上的对角线不满足题意,对面的面对角线也不满足题意,一组平行平面共有6对不满足题意的对角线,所以不满足题意的共有3×6=18(对).故从正方体六个面的对角线中任取两条作为1一对,其中所成的角为60°的共有66-18=48(对).6.某种彩票规定:从01至36共36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11到20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花()A.3360元B.6720元C.4320元D.8640元答案D解析这种特殊要求的号共有8×9×10×6=4320(注),因此至少需花费4320×2=8640(元),故选D.7.(2018·合肥三模)如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有()A.24B.48C.96D.120答案C解析若A,D颜色相同,先涂E有4种涂法,再涂A,D有3种涂法,再涂B有2种涂法,C只有一种涂法,共有4×3×2=24种;若A,D颜色不同,先涂E有4种涂法,再涂A有3种涂法,再涂D有2种涂法,当B和D相同时,C有2种涂法,当B和D不同时,B,C只有1种涂法,共有4×3×2×(2+1)=72种.根据分类加法计数原理可得,共有24+72=96种.8.已知数列{an}是公比为q的等比数列,集合A={a1,a2,…,a10},从A中选出4个不同的数,使这4个数成等比数列,这样得到4个数的不同的等比数列的个数为________.答案24解析当公比为q时,满足题意的等比数列有7种,当公比为时,满足题意的等比数列有7种,当公比为q2时,满足题意的等比数列有4种,当公比为时,满足题意的等比数列有4种,当公比为q3时,满足题意的等比数列有1种,当公比为时,满足题意的等比数列有1种,因此满足题意的等比数列共有7+7+4+4+1+1=24(种).9.在编号为1,2,3,4,5,6的六个盒子中放入两个不同的小球,每个盒子中最多放入一个小球,且不能在两个编号连续的盒子中同时放入小球,则不同的放小球的方法有________种.答案20解析设两个不同的小球为A,B,当A放入1号盒或者6号盒时,B有4种不同的放法;当A放入2,3,4,5号盒时,B有3种不同的放法,一共有4×2+3×4=20种不同的放法.10.某班一天上午有4节课,每节都需要安排1名教师去上课,现从A,B,C,D,E,F6名教师中安排4人分别上一节课,第一节课只能从A,B两人中安排一人,第四节课只能从A,C两人中安排一人...