课时跟踪检测(二)三角函数的图象与性质(小题练)A级——12+4提速练一、选择题1.函数f(x)=sin(ωx+φ)的部分图象如图所示,则函数f(x)的解析式为()A.f(x)=sinB.f(x)=sinC.f(x)=sinD.f(x)=sin解析:选A由题图可知,函数f(x)的最小正周期为T==×4=π,所以ω=2,即f(x)=sin(2x+φ).又函数f(x)的图象经过点,所以sin=1,则+φ=2kπ+(k∈Z),解得φ=2kπ+(k∈Z),又|φ|<,所以φ=,即函数f(x)=sin,故选A.2.(2018·重庆模拟)函数f(x)=sin的图象的一个对称中心是()A.B.C.D.解析:选C令x-=kπ(k∈Z),得x=kπ+(k∈Z),当k=0时,x=,所以函数f(x)=sin的图象的一个对称中心是,故选C.3.(2018·宝鸡质检)函数f(x)=tan的单调递增区间是()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)解析:选B由kπ-<2x-0)的图象向右平移个单位长度得到函数y=g(x)的图象,并且函数g(x)在区间上单调递增,在区间上单调递减,则实数ω的值为()A.B.C.2D.解析:选C因为将函数f(x)=sinωx(ω>0)的图象向右平移个单位长度得到函数y=g(x)的图象,所以g(x)=sin,又函数g(x)在区间上单调递增,在区间上单调递减,所以g=sin=1且≥,所以所以ω=2,故选C.9.(2018·合肥一模)将函数y=cosx-sinx的图象先向右平移φ(φ>0)个单位长度,再将所得的图象上每个点的横坐标变为原来的a倍,得到y=cos2x+sin2x的图象,则φ,a的可能取值为()A.φ=,a=2B.φ=,a=2C.φ=,a=D.φ=,a=解析:选D将函数y=cosx-sinx=cos的图象向右平移φ(φ>0)个单位长度,可得y=cos的图象,再将函数图象上每个点的横坐标变为原来的a倍,得到y=cos的图象,又y=cos=cos2x+sin2x=cos,∴=2,-φ=-+2kπ(k∈Z),∴a=,φ=+2kπ(k∈N),又φ>0,结合选项知选D.10.(2018·开封模拟)若存在正整数ω和实数φ使得函数f(x)=sin2(ωx+φ)的图象如图所示(图象经过点(1,0)),那么ω的值为()A.1B.2C.3D.4解析:选B由f(x)=sin2(ωx+φ)=及其图象知,<×<1,即<ω<π,所以正整数ω=2或3.由函数f(x)的图象经过点(1,0),得f(1)==0,得2ω+2φ=2kπ(k∈Z),即2φ=2kπ-2ω(k∈Z).由图象知f(0)>,即=>,得cos2ω<0,所以ω=2,故选B.11.(2018·沈阳模拟)已知函数f(x)=sin,以下命题中为假命题的是()A.函数f(x)的图象关于直线x=对称B.x=-是函数f(x)的一个零点C.函数f(x)的图象可由g(x)=sin2x的图象向左平移个单位长度得到D.函数f(x)在上是增函数解析:选C令...