专题05函数的单调性与最值1.理解函数的单调性、最大值、最小值及其几何意义2.会运用基本初等函数的图象分析函数的性质热点题型一函数单调性的判定与证明例1、【2017北京,文5】已知函数,则(A)是偶函数,且在R上是增函数(B)是奇函数,且在R上是增函数(C)是偶函数,且在R上是减函数(D)是奇函数,且在R上是增函数【答案】B【提分秘籍】判断(或证明)函数单调性的主要方法(1)函数单调性的定义;(2)观察函数的图象;(3)利用函数和、差、积、商和复合函数单调性的判断法则;(4)利用导数等。其中(2)(3)一般用于选择、填空题。【举一反三】试讨论函数f(x)=(a≠0)在(-1,1)上的单调性。【解析】设-1<x1<x2<1,f(x)=a=a,f(x1)-f(x2)=a-a热点题型二求函数的单调区间例2、【2017课标II,文8】函数的单调递增区间是A.B.C.D.【答案】D【解析】函数有意义,则:,解得:或,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为.故选D.【提分秘籍】求函数单调区间的常用方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间。(2)定义法:先求定义域,再利用单调性定义。(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性写出它的单调区间。(4)导数法:利用导数取值的正负确定函数的单调区间。(5)求复合函数的单调区间的一般步骤是:①求函数的定义域;②求简单函数的单调区间;③求复合函数的单调区间,依据是“同增异减”。【举一反三】求出下列函数的单调区间。(1)f(x)=|x2-4x+3|;(2)f(x)=log2(x2-1);(3)f(x)=;【解析】(1)先作出函数y=x2-4x+3的图象,由于绝对值的作用,把x轴下方的部分翻折到上方,可得函数y=|x2-4x+3|的图象,如图所示。由图可知,f(x)在(-∞,1)和(2,3]上为减函数,在[1,2]和(3,+∞)上为增函数,故f(x)的增区间为[1,2],热点题型三函数单调性的应用例3.(1)已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)]·(x2-x1)<0恒成立,设a=f,b=f(2),c=f(3),则a,b,c的大小关系为()A.c>a>bB.c>b>aC.a>c>bD.b>a>c(2)定义在R上的奇函数y=f(x)在(0,+∞)上递增,且f=0,则满足f(logx)>0的x的集合为________。【答案】(1)D(2){x|0<x<或1<x<3}【解析】(1)由于函数f(x)的图象向左平移1个单位后得到的图象关于y轴对称,故函数y=f(x)的图象本身关于直线x=1对称,所以a=f=f。当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,等价于函数f(x)在(1,+∞)上单调递减,所以b>a>c。故选D。(2)由奇函数y=f(x)在(0,+∞)上递增,且f=0,得函数y=f(x)在(-∞,0)上递增,且f=0。由f(logx)>0,得logx>或-<logx<0,解得0<x<或1<x<3.所以满足条件的x的取值集合为{x|0<x<或1<x<3}。【提分秘籍】1.含“f”不等式的解法首先根据函数的性质把不等式转化为f(g(x))>f(h(x))的形式,然后根据函数的单调性去掉“f”,转化为具体的不等式(组),此时要注意g(x)与h(x)的取值应在外层函数的定义域内。2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解。3.求参数的值或取值范围的思路根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解。【举一反三】函数y=在(-1,+∞)上单调递增,则a的取值范围是()A.a=-3B.a<3C.a≤-3D.a≥-3【答案】C热点题型四函数的单调性与最值例4、已知定义在区间(0,+∞)上的函数f(x)满足f=f(x1)-f(x2),且当x>1时,f(x)<0。(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,求f(x)在[2,9]上的最小值。【解析】(1)令x1=x2>0,【提分秘籍】1.运用函数单调性求最值是求函数最值的重要方法,特别是当函数图象不易作出时,单调性几乎成为首选方法。2.函数的最值与单调性的关系若函数在闭区间[a,b]上是减函数,则f(x)在[a,b]上的最大值为f(a),最小值为f(b...