电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

反比例函数的图形与性质及应用(29张).VIP免费

反比例函数的图形与性质及应用(29张)._第1页
1/22
反比例函数的图形与性质及应用(29张)._第2页
2/22
反比例函数的图形与性质及应用(29张)._第3页
3/22
温顾知新学以致用规律总结初显身手中考导航尉犁县第一中学:吴红梅一函数正比例函数反比例函数解析式图象自变量取值范围图象的位置性质当k>0时,y随x的增大而减小当k<0时,y随x的增大而增大正比例函数与反比例函数的对比y=kx(k≠0)(特殊的一次函数)全体实数x≠0的一切实数当k>0时,在一、三象限;当k<0时,在二、四象限。当k>0时,在一、三象限;当k<0时,在二、四象限当k>0时,y随x的增大而增大当k<0时,y随x的增大而减小k<0xyoxyok>0k<0yx0y0k>0x)0(1kkxyxky或二.____,)0()0(.12112象是标系内的大致图那么它们在同一直角坐的增大而增大的函数值都随与反比例函数若正比例函数xkykxkyxkOxyACOxyDxyoOxyBDyOxDxyoBOxyACOxyDxyoOxyBDOxyAOxyDCxyoOxyBD二三则垂足为轴的垂线作过有上任意一点是双曲线设,,)1(:,)0(),(AxPkxkynmP||21||||2121knmAPOASOAPP(m,n)AoyxP(m,n)AoyxP(m,n)AoyxP(m,n)Aoyx想一想若将此题改为过P点作y轴的垂线段,其结论成立吗?||21||||2121knmAPOASOAP).(||||||,,,,)2(如图所示则垂足分别为轴的垂线轴分别作过矩形knmAPOASBAyxPOAPBP(m,n)AoyxBP(m,n)AoyxB).(||2|2||2|21||21,),,(),()3(如图所示则点轴的垂线交于作与过轴的垂线作过关于原点的对称点是设knmPAAPSAyPxPnmPnmPPPAP(m,n)AoyxP/P(m,n)oyxP/yP(m,n)oxP/以上几点揭示了双曲线上的点构成的几何图形的一类性质.掌握好这些性质,对解题十分有益.(上面图仅以P点在第一象限为例).四.___,,.,.,)2000.(621则的面积为的面积为记垂足为轴的垂线作过垂足为轴的垂线作过年武汉市SRtSRtDyCBxAOCDAOB如图:A、C是函数的图象上任意两点,xy1A.S1>S2B.S12.___,,,,1,,7则面积为的轴平行于轴平行于的任意两点对称的图图像上关于原点是函数如图SABCxBCyACOxyBA、ACoyxB∴选C解:由上述性质(3)可知,SABC△=2|k|=2C.,,21||21,21||21,21||21321111ASSSkSkSkSOOCBOBAOA故选即解:由性质(1)得A.__,,,,,,,,,,,,,,,)0(1,8321111111则有面积分别为的记边结三点轴于交轴引垂线经过三点分别向的图像上有三点在如图SSSOCCOBBOAAOCOBOACBAxxCBAxxy、A.S1=S2=S3B.S1S2>S3BA1oyxACB1C1S1S3S23k.3|||,|kkSAPCO矩形,,四象限图像在二又.____,3,,,,.9函数的解析式是则这个反比例阴影部分面积为轴引垂线轴向分别由图像上的一点是反比例函数如图yxPxkyPACoyxP.3xy解析式为解:由性质(2)可得•课堂小结:•你学到了什么?•还有疑惑吗?•作业:•小练习册函数第二课时

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

反比例函数的图形与性质及应用(29张).

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部