第三章线性系统的运动分析§3-1线性连续定常齐次方程求解一、齐次方程和状态转移矩阵的定义1、齐次方程状态方程的齐次方程部分反映系统自由运动的状况(即没有输入作用的状况),设系统的状态方程的齐次部分为:)()(tAxtx线性定常连续系统:Axx2、状态转移矩阵的定义齐次状态方程Axx有两种常见解法:(1)幂级数法;(2)拉氏变换法。其解为)0()(xetxAt。其中Ate称为状态转移矩阵(或矩阵指数函数、矩阵指数),记为:Atet)(。若初始条件为)(0tx,则状态转移矩阵记为:)(00)(ttAett对于线性时变系统,状态转移矩阵写为),(0tt,它是时刻t,t0的函数。但它一般不能写成指数形式。(1)幂级数法设Axx的解是t的向量幂级数kktbtbtbbtx2210)(式中,,,,,kbbbb210都是n维向量,则1232132)(kktkbtbtbbtx)(2210kktbtbtbbA故而有:00323021201!1!31312121bAkbbAAbbbAAbbAbbKK且有0)0(bx。故kktbtbtbbtx2210)(kktbAktbAtAbb020200!1!21)0()!1!21(22xtAktAAtIkk定义:022!1!1!21KkkkkAttAktAktAAtIe则)0()(xetxAt。(2)拉氏变换解法将Axx两端取拉氏变换,有)()0()(sAxxssx)0()()(xsxAsI)0()()(1xAsIsx拉氏反变换,有)0(])[()(11xAsILtx则])[()(11AsILetAt【例3.1.1】已知系统的状态方程为xx0010,初始条件为)0(x,试求状态转移矩阵和状态方程的解。解:(1)求状态转移矩阵kkAttAktAAtIet!1!21)(22此题中:0010A,000032nAAA所以1010001001)(ttAtIetAt(2)状态方程的解)0(101)0()(xtxetxAt【例3.1.2】已知系统状态方程为xx3210,初始条件为)0(x,试求状态方程的解。解:)0()(xetxAt321321000ssssAsI2211221221112112213)2)(1(1)(1ssssssssssssAsIttttttttAteeeeeeeeAsILet2222112222])[()(故而)0(2222)0()(2222xeeeeeeeexetxttttttttAt二、状态转移矩阵Ate的性质kkAttAktAAtIet!1!21)(22(1)I)0((2)AttAt)()()(A)0((3))()()()()(122121tttttt证明:)()()()()(1221)()()(212121tttteeetttAtAttA%Example3.1.2:%MATLABsymsstx;A=sym('[0,1;-2,-3]');I=eye(2);L=inv(s*I-A)lap=ilaplace(L)x=lap*x(4))()(1tt,)()(1tt证明:)()()()()()0(1ttItttt(5))()()(00txtttx证明:)0()()(xttx)()()0()0()()(00100txtxxttx,代入上式∴)()()()()()(00001txtttxtttx证毕。(6))()()(011202tttttt证明:)()()(0022txtttx⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯(1))()()(0011txtttx⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2))()()()()()(001121122txtttttxtttx⋯⋯⋯⋯⋯.(3)比较(1)、(3)式,有)()()(011202tttttt成立。证毕。(7))()(kttk证明:)(][)()(kteeetktAkAtkAtk(8)若BAAB,则AtBtBtAttBAeeeee)(若BAAB,则AtBtBtAttBAeeeee)((9)设)(t为Axx的状态转移矩阵,引入非奇异变换xPx后的状态转移矩阵为:PePtAt1)(证明:将xPx代入Axx中,有xAPPx1APtPet1)(kkAPtPtAPPktAPPAPtPIe)(!1)(!21122111kktAPPktAPPAPtPPP)(!1)(!21122111PtAktAAtIPkk)!1!21(221PePAt1∴PePtAt1)(。证毕。(10)两种常见的状态转移矩阵①设],,,[21ndiagA,即A为对角阵,且具有互异元素。则ttneet00)(1②设A为mm约当阵mmA11,则ttmtttmttteetmteeetmetteet000)!2(10)!1(1!21)(212【例3.1.3】已知状态转移矩阵为ttttttttAteeeeeeeee22222222试求)(1t和A。解:(1)根据状态转移矩阵的性质4,可知tttttttteeeeeeeett222212222)()((2)根据状态转移矩阵的性质2,可知32100442222)0(2222teeeeeeeeAtttttttt【例3.1.4】已知4401101A试求状态转移矩阵Ate。解:根据状态转移矩阵的性质10,可知ttttttttttAteteeetteeetetteeet000002106121)(232【例3.1.5】验证如下矩阵是否为状态转移矩阵。ttttsincos0cossin0001解:利用性质(1)I)0(Ittttt0101000010sincos0cossin0001,所以该矩阵不是状态转移矩阵。【例3.1.6】已知系统状态方程为Axx,当11)0(x时,tteetx22)(当12)0(x时,tteetx2)(试求系统矩阵A和状态转移矩阵Ate。解:由性质(2)可知:)0(A由已知,有)0()(xetxAt1121222Attttteeeee∴112121121222122ttttttttAteeeeeeeeetttttttteeeeeeee22222222∴3120424222)(022220tttttttttteeeeeeeetA§3-2线性连续定常非齐...