电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

解三角形大题专项训练VIP免费

解三角形大题专项训练_第1页
1/23
解三角形大题专项训练_第2页
2/23
解三角形大题专项训练_第3页
3/23
实用标准文档1.在△ABC中,内角A,B,C的对边分别为a,b,c,已知.(Ⅰ)求cosA的值;(Ⅱ)的值.2.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值;(2)若cosB=,△ABC的周长为5,求b的长.3.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若C2=b2+a2,求B.4.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC(1)求cosA的值(2)若a=1,,求边c的值.5.在△ABC中,角A、B、C的对边分别为a,b,c(1)若,求A的值;(2)若,求sinC的值.6.△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=(I)求△ABC的周长;(II)求cos(A﹣C)的值.7.在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=.(I)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.8.设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2﹣3a2=4bc.(Ⅰ)求sinA的值;(Ⅱ)求的值.9.在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.10.在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且.(1)确定角C的大小;(2)若,且△ABC的面积为,求a+b的值.11.在△ABC中,角A,B,C的对边分别为,.(Ⅰ)求sinC的值;(Ⅱ)求△ABC的面积.12.设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:(Ⅰ)的值;(Ⅱ)cotB+cotC的值.13.△ABC的内角A,B,C的对边分别为a,b,c.已知,求:(Ⅰ)A的大小;(Ⅱ)2sinBcosC﹣sin(B﹣C)的值.14.在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知a2+c2=2b2.(Ⅰ)若,且A为钝角,求内角A与C的大小;(Ⅱ)求sinB的最大值.15.在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知.(1)若△ABC的面积等于,求a,b;(2)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.16.设ABC△的内角ABC,,所对的边长分别为abc,,,且cos3aB,sin4bA.(Ⅰ)求边长a;(Ⅱ)若ABC△的面积10S,求ABC△的周长17.设△ABC的内角A,B,C的对边分别为a,b,c.已知2223bcabc,求:(Ⅰ)A的大小;(Ⅱ)2sincossin()BCBC的值.18.在ABC△中,内角,,ABC对边的边长分别是,,abc.已知2,3cC.⑴若ABC△的面积等于3,求,ab;⑵若sinsin()2sin2CBAA,求ABC△的面积.答案与评分标准一.选择题(共2小题)1.(2009?福建)已知锐角△ABC的面积为,BC=4,CA=3,则角C的大小为()A.75°B.60°C.45°D.30°考点:解三角形。专题:计算题。分析:先利用三角形面积公式表示出三角形面积,根据面积为3和两边求得sinC的值,进而求得C.解答:解:S=BC?AC?sinC=×4×3×sinC=3∴sinC= 三角形为锐角三角形∴C=60°故选B点评:本题主要考查了解三角形的实际应用.利用三角形的两边和夹角求三角形面积的问题,是三角形问题中常用的思路.2.(2004?贵州)△ABC中,a,b、c分别为∠A、∠B、∠C的对边,如果a,b、c成等差数列,∠B=30°,△ABC的面积为,那么b等于()A.B.C.D.考点:解三角形。专题:计算题。分析:先根据等差中项的性质可求得2b=a+c,两边平方求得a,b和c的关系式,利用三角形面积公式求得ac的值,进而把a,b和c的关系式代入余弦定理求得b的值.解答:解: a,b、c成等差数列,∴2b=a+c,得a2+c2=4b2﹣2ac、又 △ABC的面积为,∠B=30°,故由,得ac=6.∴a2+c2=4b2﹣12.由余弦定理,得,解得.又b为边长,∴.故选B点评:本题主要考查了余弦定理的运用.考查了学生分析问题和基本的运算能力.二.填空题(共2小题)3.(2011?福建)如图,△ABC中,AB=AC=2,BC=,点D在BC边上,∠ADC=45°,则AD的长度等于.考点:解三角形。专题:计算题。分析:由A向BC作垂线,垂足为E,根据三角形为等腰三角形求得BE,进而再Rt△ABE中,利用BE和AB的长求得B,则AE可求得,然后在Rt△ADE中利用AE和∠ADC求得AD.解答:解:由A向BC作垂线,垂足为E, AB=AC∴BE=BC= AB=2∴cosB==∴B=30°∴AE=BE?tan30°=1 ∠ADC=45°∴AD==故答案为:点评:本题主要考查了解三角形问题.考查了学生分析问题和解决...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

解三角形大题专项训练

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部