解析几何常规题型及解题方法探究熊致韩A:常规题型方面(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)xy11,(,)xy22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。典型例题:给定双曲线xy2221。过A(2,1)的直线与双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程。分析:设Pxy111(,),Pxy222(,)代入方程得xy121221,xy222221。两式相减得()()()()xxxxyyyy12121212120。又设中点P(x,y),将xxx122,yyy122代入,当xx12时得22201212xyyyxx·。又kyyxxyx121212,代入得24022xyxy。当弦PP12斜率不存在时,其中点P(2,0)的坐标也满足上述方程。因此所求轨迹方程是24022xyxy说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。(2)焦点三角形问题椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。典型例题:设P(x,y)为椭圆xayb22221上任一点,Fc10(,),Fc20(,)为焦点,PFF12,PFF21。(1)求证离心率sinsin)sin(e;(2)求|||PFPF1323的最值。分析:(1)设||PFr11,|PFr22,由正弦定理得rrc122sinsinsin()。得rrc122sinsinsin(),sinsin)sin(ace(2)()()aexaexaaex3332226。当x0时,最小值是23a;当ax时,最大值是26323aea。(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法典型例题:抛物线方程,直线与轴的交点在抛物线准线的右边。ypxpxytx210()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A、B,且OA⊥OB,求p关于t的函数f(t)的表达式。(1)证明:抛物线的准线为114:xp由直线x+y=t与x轴的交点(t,0)在准线右边,得tptp14440,而由消去得xytypxy21()xtpxtp2220()()()()2422tptpptp()440故直线与抛物线总有两个交点。(2)解:设点A(x1,y1),点B(x2,y2)xxtpxxtp121222,OAOBkkOAOB,1则xxyy12120又yytxtx1212()()xxyyttp1212220()pfttt()22又,得函数的定义域是ptpft0440()()()200,,(4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。典型例题:已知抛物线y2=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B,|AB|≤2p(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。解:(1)直线L的方程为:y=x-a,将y=x-a代入抛物线方程y2=2px,得:设直线L与抛物线两交点的坐标分别为A(x1,y1),B(x2,y2),则221212)(204)(4axxpaxxapa,又y1=x1-a,y2=x2-a,,2)2(80,0)2(8,2||0)2(8]4)[(2)()(||21221221221pappapppABappxxxxyyxxAB解得:.42pap(2)设AB的垂直平分线交AB与点Q,令其坐标为(x3,y3),则由中点坐标公式得:paxxx2213,.2)()(221213paxaxyyy∴|QM|2=(a+p-a)2+(p-0)2=2p2.又△MNQ为等腰直角三角形∴|QM|=|QN|=P2∴S△NAB=22222||22||||21pppABpQNAB,即△NAB面积的最大值为P22。(6)存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。(当然也可以利用韦达定理并结合判别式来解决)典型例题:已知椭圆C的方程xy22431,试确定m的取值范围,使得对于直线yxm4,椭圆C上有不同两点关于直线对称。分析:椭圆上两点(,)xy11,(,)xy22,代入方程,相减得31212()()xxxx412()yy()yy120。又xxx122,yyy122,kyyxx121214,代入得yx3。又由yxyxm34解得...