课时达标第10讲[解密考纲]数形结合是数学中的重要思想方法.利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质的应用问题,解决函数的零点、方程的解的问题,解决求解不等式的问题等.一、选择题1.函数y=的图象大致为(D)解析由题意知x≠1,∵00,lnx<0.∴y<0,图象在x轴下方,排除B项,C项;当x>1时,2x>0,lnx>0,∴y>0,图象在x轴上方,当x→+∞时,y=→+∞,故选D.2.若函数f(x)=的图象如图所示,则f(-3)=(C)A.-B.-C.-1D.-2解析由图象可得-a+b=3,ln(-1+a)=0,得a=2,b=5,∴f(x)=故f(-3)=2×(-3)+5=-1,故选C.3.设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a=(A)A.3B.2C.1D.-1解析∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0),即3+|2-a|=1+|a|,排除D项,C项,又f(-1)=f(3),即|a+1|=4+|3-a|,用代入法知选A.4.(2018·四川成都模拟)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为(D)A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)解析f(x)为奇函数,所以不等式<0化为<0,即xf(x)<0,则f(x)的大致图象如图所示,所以xf(x)<0的解集为(-1,0)∪(0,1).5.(2018·河南统考)若函数y=f(2x+1)是偶函数,则函数y=f(2x)的图象的对称轴方程是(C)A.x=-1B.x=-C.x=D.x=1解析∵f(2x+1)是偶函数,其图象关于y轴对称,而f(2x+1)=f,1∴f(2x)的图象可由f(2x+1)的图象向右平移个单位得到,即f(2x)的图象的对称轴方程是x=.6.(2018·广东名校模拟)已知函数f(x)=4-x2,函数g(x)(x∈R且x≠0)是奇函数,当x>0时,g(x)=log2x,则函数f(x)·g(x)的大致图象为(D)解析易证函数f(x)=4-x2为偶函数,又g(x)是奇函数,所以函数f(x)·g(x)为奇函数,其图象关于原点对称,排除A项、B项.当x>0时,f(x)·g(x)=(4-x2)log2x有两个零点1,2,且04或a<0时,f(x)的图象与直线y=a只有一个交点,方程f(x)=a只有一个实数根,即a的取值范围是(-∞,0)∪(4,+∞).11.已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(1)求f(x)的解析式;(2)若g(x)=f(x)+,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.解析(1)设f(x)图象上任一点P(x,y),则点P关于点(0,1)的对称点P′(-x,2-y)在h(x)的图象上,即2-y=-x-+2,∴y=f(x)=x+(x≠0).(2)g(x)=f(x)+=x+,g′(x)=1-.∵g(x)在(0,2]上为减函数,∴1-≤0在(0,2]上恒成立,即a+1≥x2在(0,2]上恒成立,∴a+1≥4,即a≥3,故a的取值范围是[3,+∞).12.已知函数f(x)=2x,x∈R.(1)当m取何值时方程|f(x)-2|=m有一个解?两个解?(2)若不等式f2(x)+f(x)-m>0在R上恒成立,求m的取值范围.解析(1)令F(x)=|f(x)-2|=|2x-2|,G(x)=m,画出F(x)的图象如图所示:由图象看出,当m=0或m≥2时,函数F(x)与G(x)的图象只有一个交点,原方程有一个解;当00),H(t)=t2+t,因为H(t)=2-在区间(0,+∞)上是增函数,所以当t>0时,H(t)>H(0)=0.因此要使t2+t>m在区间(0,+∞)上恒成立,应有m≤0,即所求m的取值范围为(-∞,0].3