电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第九章 平面解析几何 9.8.1 圆锥曲线中求值与证明问题练习 苏教版-苏教版高三全册数学试题VIP免费

高考数学一轮复习 第九章 平面解析几何 9.8.1 圆锥曲线中求值与证明问题练习 苏教版-苏教版高三全册数学试题_第1页
1/13
高考数学一轮复习 第九章 平面解析几何 9.8.1 圆锥曲线中求值与证明问题练习 苏教版-苏教版高三全册数学试题_第2页
2/13
高考数学一轮复习 第九章 平面解析几何 9.8.1 圆锥曲线中求值与证明问题练习 苏教版-苏教版高三全册数学试题_第3页
3/13
9.8.1圆锥曲线中求值与证明问题考点一求值问题1.(2020·西安模拟)已知椭圆、双曲线均是以直角三角形ABC的斜边AC的两端点为焦点的曲线,且都过B点,它们的离心率分别为e1,e2,则+=()A.B.2C.D.32.已知A,B是抛物线y2=2px(p>0)上的两点,直线AB垂直于x轴,F为抛物线的焦点,射线BF交抛物线的准线于点C,且|AB|=|AF|,△AFC的面积为2+2,则p的值为()A.B.1C.2D.43.(2019·天津高考)设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为.(1)求椭圆的方程.(2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若|ON|=|OF|(O为原点),且OP⊥MN,求直线PB的斜率.【解析】1.选B.如图,由题意,设椭圆的长半轴为a1,双曲线的半实轴为a2,1根据椭圆和双曲线定义:|AB|+|BC|=2a1,|BC|-|AB|=2a2,可得|BC|=a1+a2,|AB|=a1-a2,设AC=2c,在直角三角形ABC中,由勾股定理可得,4c2=(a1-a2)2+(a1+a2)2,即+=2c2,即+=2.2.选C.过点A作AH垂直于准线,垂足为H,作CG垂直于AB,垂足为G,根据抛物线的定义|AH|=|AF|,CE∥AB,因此|DE|=|AH|=|CG|=|AF|,由S△AFC=S△ABC-S△AFB,S△ABC=|AB|·|CG|=|AD|·|CG|,S△AFB=|AB|·|DF|=|AD|·|DF|,得S△AFC=|AD|·|CG|-|AD|·|DF|=|AD|(|CG|-|DF|),=|AD|(|DE|-|DF|)=|AD|·|EF|,又|DE|=|AF|=|DF|,则|EF|=(-1)|DF|,|AD|=2|DF|==|EF|,可得S△AFC=|EF|2,又因为S△AFC=2+2,所以|EF|=2,因为EF正好是焦点到准线的距离,即p=2.23.(1)设椭圆的半焦距为c,依题意,2b=4,=,又a2=b2+c2,可得a=,b=2,c=1.所以,椭圆的方程为+=1.(2)由题意,设P(xP,yP)(xP≠0),M(xM,0).设直线PB的斜率为k(k≠0),又B(0,2),则直线PB的方程为y=kx+2,与椭圆方程联立整理得(4+5k2)x2+20kx=0,可得xP=-,代入y=kx+2得yP=,进而直线OP的斜率=.在y=kx+2中,令y=0,得xM=-.由题意得N(0,-1),所以直线MN的斜率为-.3由OP⊥MN,得·=-1,化简得k2=,从而k=±.所以直线PB的斜率为或-.1.直线与圆锥曲线相交时的弦长问题(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长:|P1P2|=|x1-x2|===|y1-y2|.(2)斜率不存在时,可求出交点坐标,直接求解(利用两点间距离公式).2.平面图形面积的求解,首先根据题意确定平面图形的形状,然后确定其面积的表达式,求出相关的度量——弦长、距离等,最后代入公式求解即可.3.条件求值,主要是将已知条件坐标化,列出对应的方程,通过解方程(组)求值.秒杀绝招题1中可以利用赋值法简化求解过程,减少计算量.不妨设直角三角形ABC三边长度分别为3,4,5.则椭圆与双曲线的焦距2c=5,则在椭圆中,2a1=3+4=7,故e1=;在双曲线中,2a2=|3-4|=1,故e1=5.所以+=+=2.考点二证明问题4命题精解读考什么:(1)圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).(2)考查数学运算与逻辑推理的核心素养以及函数与方程、转化与化归的数学思想方法等.怎么考:以直线和圆锥曲线的位置关系为背景,考查角度与长度关系的证明,直线平行、垂直、三点共线等位置关系的证明等.新趋势:等量关系的证明与三角函数等知识的结合,如证明角度相等.学霸好方法1.解决证明问题时,主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等直接进行证明.2.交汇问题数量关系的问题,多与其他模块知识相结合,如三角函数、向量以及函数相关知识等.证明数量关系【典例】(2019·北京模拟)已知椭圆C:+=1(a>b>0)的一个焦点为F(1,0),离心率为.A为椭圆C的左顶点,P,Q为椭圆C上异于A的两个动点,直线AP,AQ与直线l:x=4分别交于M,N两点.(1)求椭圆C的方程.(2)若△PAF与△PMF的面积之比为,求M的坐标.(3)设直线l与x轴交于点R,若P,F,Q三点共线,求证:∠MFR=∠FNR.【解题导思】序号题目拆解(1)根据已知条件求标准方程中的参数值由题意得c=1,结合离心率求得a,再由隐含条件求得b,则椭圆方程可求.(2)①求AP与AM的关系将两个三角形面积比转化为AP与AM的关系.②求M的纵坐标利用向量关系建立坐标的方程求解.(3)①求R点坐标直线l与x轴的交点...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第九章 平面解析几何 9.8.1 圆锥曲线中求值与证明问题练习 苏教版-苏教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部