电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

立体几何复习VIP免费

立体几何复习_第1页
1/78
立体几何复习_第2页
2/78
立体几何复习_第3页
3/78
空间几何体空间几何体的结构zxxk柱、锥、台、球的结构特征简单几何体的结构特征三视图柱、锥、台、球的三视图简单几何体的三视图直观图斜二测画法平面图形空间几何体中心投影柱、锥、台、球的表面积与体积平行投影画图识图柱锥台球圆锥圆台多面体旋转体圆柱棱柱棱锥棱台概念结构特征侧面积体积球概念性质侧面积体积由上述几何体组合在一起形成的几何体称为简单组合体DABCEFF’A’E’D’B’C’棱柱结构特征z..x..x..k有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体。侧棱侧面底面顶点注意:注意:有两个面互相平行,其余各面都是平行四边形的几何体一定是棱柱吗?学科网答:不一定是.如图所示,不是棱柱.棱柱的性质1.侧棱都相等,侧面都是平行四边形;2.两个底面与平行于底面的截面都是全等的多边形;3.平行于侧棱的截面都是平行四边形;1、按侧棱是否和底面垂直分类:棱柱斜棱柱直棱柱正棱柱其它直棱柱2、按底面多边形边数分类:棱柱的分类三棱柱、四棱柱、五棱柱、······棱柱的分类按边数分按侧棱是否与底面垂直分斜棱柱直棱柱正棱柱三棱柱四棱柱五棱柱四棱柱平行六面体长方体直平行六面体正四棱柱正方体底面变为平行四边形侧棱与底面垂直底面是矩形底面为正方形侧棱与底面边长相等几种六面体的关系:几种六面体的关系:棱锥SABCD顶点侧面侧棱底面结构特征有一个面是多边形,其余各面都是有一个公共顶点的三角形。按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、……ABCDS棱锥的分类正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心的棱锥。【知识梳理】棱锥1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心,这样的棱锥叫做正棱锥。2、性质Ⅰ、正棱锥的性质(1)各侧棱相等,各侧面都是全等的等腰三角形。(2)棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。正棱锥性质2棱锥的高、斜高和斜高在底面的射影组成一个直角三角形。棱锥的高、侧棱和侧棱在底面的射影组成一个直角三角形RtSOH⊿RtSOB⊿RtSHB⊿RtBHO⊿棱台由棱锥截得而成,所以在棱台中也有类似的直角梯形。顶点侧面斜高高侧棱底面OCDABHS棱台结构特征ABCDA’B’C’D’用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.B’圆柱AA’OBO’轴底面侧面母线结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱。B’圆锥S顶点ABO底面轴侧面母线结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。圆台结构特征OO’用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.球结构特征O半径球心以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体.空间几何体的表面积和体积圆柱的侧面积:2Srl圆锥的侧面积:Srl圆台的侧面积:()Srrl球的表面积:24SR柱体的体积:VSh锥体的体积:13VSh台体的体积:1()3VSSSSh球的体积:343VR面积体积练习C221.设棱锥的底面面积为8cm2,那么这个棱锥的中截面(过棱锥的中点且平行于底面的截面)的面积是()(A)4cm2(B)cm2(C)2cm2(D)cm222.若一个锥体被平行于底面的平面所截,若截面面积是底面面积的四分之一,则锥体被截面截得的一个小锥与原棱锥体积之比为()(A)1:4(B)1:3(C)1:8(D)1:7C62练4:一个正三棱锥的底面边长是6,高是,那么这个正三棱锥的体积是()(A)9(B)(C)7(D)32927练5:一个正三棱台的上、下底面边长分别为3cm和6cm,高是1.5cm,求三棱台的侧面积。1A1B1CBCAA22327cm6.如图,等边圆柱(轴截面为正方形ABCD)一只蚂蚁在A处,想吃C1处的蜜糖,怎么走才最快,并求最短路线的长?ABCDADCB二、空间几何体的三视图和直观图中心投影平行投影斜二测画法俯视图侧视图正视图三视图直观图投影知识框架ABCabcABCabcHH平行投影法平行投影法投影线相互平行的投影法.(1)斜...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

立体几何复习

您可能关注的文档

中小学文库+ 关注
实名认证
内容提供者

精品资料应用尽有

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部