2017~2018年度泰州二中学校本教学案编写杨海燕圆的方程同步训练1.(2017·南京检测)圆心在y轴上,且过点(3,1)的圆与x轴相切,则该圆的方程是______.2.已知圆M的圆心M在y轴上,半径为1,直线l:y=2x+2被圆M所截得的弦长为,且圆心M在直线l的下方,则圆M的标准方程是__________.3.若直线ax+2by-2=0(a>0,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则+的最小值为________.4.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是________________.5.圆C的圆心在y轴正半轴上,且与x轴相切,被双曲线x2-=1的渐近线截得的弦长为,则圆C的标准方程为______________.6.(2016·淮安模拟)已知P是直线l:3x-4y+11=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线(A,B是切点),C是圆心,那么四边形PACB的面积的最小值是__________.7.(2016·常州模拟)已知圆C过点(-1,0),且圆心在x轴的负半轴上,直线l:y=x+1被该圆所截得的弦长为2,则过圆心且与直线l平行的直线方程为________________.8.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为______________.9.已知D是由不等式组所确定的平面区域,则圆x2+y2=4在区域D内的弧长为________.10.在平面直角坐标系中,O为原点,A(-1,0),B(0,),C(3,0),动点D满足|CD|=1,则|OA+OB+OD|的最大值是________..11.已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段的长为4,半径小于5.(1)求直线PQ与圆C的方程;(2)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.12.在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为,求圆P的方程.1