《平行四边形的判定》教学设计方案陕西省凤翔县竞存中学高志强课题名称《平行四边形的判定》科目数学年级八年级教学时间2课时学习者分析大部份基础较差,自主学习能力较弱教学目标(一)知识与技能目标:1、探索平行四边形的判别条件:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形,2.掌握应用上面两种判别方法对一些平行四边形的判别进行说理。(二)过程与方法目标:经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识,使学生逐步掌握说理基本方法。(三)情感态度与价值观目标:通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情。教学重点、难点教学重点:探索并掌握平行四边形的判别条件:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。教学难点:经历平行四边形判别条件的探索过程,发展学生的合情推理意识、主动探索的习惯,逐步掌握说理的基本方法。教学资源(1)A4纸、直尺、圆规、用木棍自制的活动的平行四边形(2)教师自制的多媒体课件(3)上课环境为多媒体大屏幕环境及幻灯机教学方法自主、合作、探究、引导课题平行四边形的判定教教学(一)、复习提问,引入新课(多媒体展示问题)1学过程活动(一)1、平行四边形定义是什么?2、平行四边形的性质有哪些?3、平行四边形的性质能否判定四边形是平行四边形?(学生回忆并回答以上问题,教师引导学生说出可以用平行四边形的定义判断一个四边形是不是平行四边形。平行四边形的定义既是它的性质,又是它的判定,目前判定一个四边形是不是平行四边形的方法只有定义吗?教师由此引出课题。)设计意图:本节课采用复习引入的方式,以问题唤醒学生的回忆,引起学生的思考。让学生明确平行四边形的定义既是它的性质,又是它的判定,目前判定一个四边形是不是平行四边形的方法不只有定义。为进一步探究做铺垫。教学活动(二)(二)探究发现,得出新知多媒体展示探究1:将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边,转动这个四边形使它形状改变,在图形变化的过程中,它一直是一个平行四边形吗?(学生拿出课前准备好的木条,通过观察、实验、猜想得出:两组对边分别相等的四边形是平行四边形。教师接着提出问题:你能否证明出两组对边分别相等的四边形是平行四边形呢?引导学生分组讨论交流,汇报想法,教师引导学生把证明定理的过程由文字语言转换成符号语言,规范几何语言。)多媒体展示探究2:如图,将两根细木条AC、BD的中点重叠,用小钉绞合在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD。并观察:转动两根木条,四边形ABCD一直是平行四边形吗?2教学过程教学(让学生动手实验,观察,猜想,师生共同得出:对角线互相平分的四边形是平行四边形。然后学生独立讨论交流验证对角线互相平分的四边形是平行四边形的过程。指一名同学板演证明的过程。师生共同指正。)设计意图:通过探究1和探究2,让学生自己动手、实验,亲身感受到知识的发生过程,并通过观察、猜想经历知识的发展形成过程,体验了“发现”知识的快乐,变被动接受为主动探究。让学生在探究的过程中学会与人合作。指名学生板演的目的是让学生明确使用几何语言的规范性和严谨性。教学活动(三)(三)、应用新知,巩固练习1、填空:如图,四边形ABCD中,(1).若AB∥CD,补充条件_____,使四边形ABCD为平行四边形。(2)若AB=CD,补充条件_____,使四边形ABCD为平行四边。(3)若对角线AC、BD交于点O,OA=OC=3,OB=5,补充条件_____,使四边形ABCD为平行四边形。(4)若四边形ABCD为平行四边形,E、G、F、H分别为OA、OB、OC、OD的中点,那么四边形EGFH_____平行四边形。(填“是”或“不是”,并口述理由。)2、已知:如图4,E和F是ABCD对角钱AC上两点,AE=CF.求证:四边形BFDE是平行四边形.设计意图:通过习题的由易到难,检验学生对所学知识的理解和掌握。教学(四)、交流反馈,归纳总结3过程活动(四)提问:1、到目前为此,我们判定平行四边形的方法有几种?2、是哪...