二元一次方程组解应用题一、列方程解应用题的基本关系量:行程问题:速度×时间=路程顺水速度=静水速度+水流速度逆水速度=静水速度—水流速度工程问题:工作效率×工作时间=工作量银行利率问题:免税利息=本金×年利率×年数本息和=本金+利息销售问题:利润=售价-进价售价=标价×10n(n为打折数)二、用二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系。(审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组。(设未知数,列方程组)3、列出方程组并求解,得到答案。(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意。(检验,答)三、列方程组解应用题的常见题型:和、差、倍、分问题:较大量=较小量+多余量,总量=倍数×倍量产品配套问题:加工总量成比例速度问题:速度×时间=路程航速问题:此类问题分为水中航速和风中航速两类顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位1的工程问题增长率问题:原量×(1+增长率)=增长后的量原量×(1-减少率)=减少后的量浓度问题:溶液×浓度=溶质银行利率问题:免税利息=本金×年(月)利率×年(月)数若要交税,则:利息=本金×利率×时间—本金×利率×时间×税率利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示几何问题:必须掌握几何图形的性质、周长、面积等计算公式年龄问题:抓住人与人的岁数是同时增长的跟踪练习和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率⋯⋯”来体现。(2)多少关系:通过关键词语“多、少、和、差、不足、剩余⋯⋯”来体现。1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了%,1990年6月底每10万人中约有多少人具有小学文化程度等积变形问题:“等积变形”是以形状改变而体积不变为前提。常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。2.用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为1251252mm内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm(结果保留整数314.)劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。3.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套比例分配问题:这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。4.三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c。(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。5.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。6.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程7.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里...