三角形内角和定理教学设计一、教材分析1、内容分析《三角形内角和定理》是北师大版八年级上册第七章平行线的证明的最后一节,是在学生学习了证明的必要性和平行线的性质与判定的基础上进行学习的。《三角形内角和定理》是对前几节证明的自然延续,是平行线性质的后续应用,是对推理证明的巩固与加深。同时,三角形内角和定理是计算角的度数的常用方法之一,是学生今后学习多边形内角和以及圆等知识的基础,探索定理证明过程中体现的数学思想和方法、引入的辅助线的添加方法也为学生后续几何学习奠定了基础,具有承上启下的作用。2、学情分析:(1)学生已经在小学和七年级的时候接触过三角形内角和定理,并且进行了猜想与验证及口头说理过程。这为证明三角形内角和定理提供了认知基础。(2)从学生的学习动机与需要上看,他们有探究新事物的欲望和好奇心,这为探究三角形内角和定理的证明策略及方法提供了情感保障。(3)学生在学习三角形内角和定理的证明过程中,其认知顺序可能是建构型的。二、学习目标:1、知识与技能目标:学生由对三角内角和定理感性认识上升到理性推理证明,掌握三角形内角和定理的证明及简单应用。2、过程与方法目标:学生亲历探索撕纸过程对比,体会思维实验和符号化的理性运用,在观察、操作、推理、归纳等探索过程中,发展合情推理能力,逐步养成逻辑推理能力,并形成一定的逻辑思维能力。3、情感态度与价值观目标:经历三角形内角和定理不同种方法的推理证明过程,培养学生创造性,弘扬个性发展,体验解决问题的成就感,体会数学证明的严谨性和推理意义,培养学习数学的兴趣,感悟逻辑推理的数学价值。三、教学重点、难点重点:探索证明三角形内角和定理的不同方法,利用三角形内角和定理进行简单的计算或证明。难点:会在证明中添加合适的辅助线;会用一题多解的方法对三角形内角和的定理进行证明。四、设计思路分析:三角形内角和定理是学生接触较早的定理之一,其内容和应用早已为学生所熟悉。因此,本节课需要重点解决的问题是定理的证明;在定理证明中,学生将首次接触和应用辅助线,于是,在证明中“为什么要添加辅助线”、“如何添加ACSACSACS”辅助线就必然成为本节课的重点。本课基本定位在于,通过三角形内角和定理证明的教学实践、感受几何证明的思想,体会辅助线在几何问题解决中的桥梁作用。同时,引领学生体会数学中的重要思想——数形结合。借助“撕三角形纸片,拼接,验证三角形内角和定理”的过程分析,启发诱导学生初步体会辅助线及其在证明中的作用。最后,引领学生进一步体会辅助线添加方法的多样性,渗透“最优化”思想。五、教学策略:1、学教方式:为真正落实学生的主体地位,教师只是教学过程的组织者、合作者、引导者,特确定了如下学教方式:学生自主探究、合作交流学习,教师引导发现教学。2、教学支持:为促进学生自主学习,增大课堂容量,提高效率,突出重点,突破难点,本节课将采用多媒体演示教学。六、教学过程第一环节:激趣引入认识三角形内角:我们已经认识了什么是三角形,你能说出三角形有什么特点:引导学生说出三角形的内角和是180。,提出疑问:是不是所有的三角形的内角和都是180。呢,接下来我们一起来验证一下这个问题。我们现在可以通过哪些方法来验证呢:1、度量法,2、折叠法,3、拼接法探究活动一:1、让学生用我们手中的工具——量角器来度量三个内角,观察它们的关系。2、教师通过动画的形式让学生观察不同的三角形都有同样的关系,三个内角的和是180。。探究活动二:(1)用折纸的方法验证三角形内角和定理.先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6—38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果⑴⑵(3)(4)试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?探究活动三:将纸片三角形三顶角剪下,随意将它们拼凑在一起。试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对...