人教新课标3公式法——完全平方公式一、新课引入试计算:9992+1998+12×999×1=(999+1)2=106此处运用了什么公式?完全平方公式逆用就像平方差公式一样,完全平方公式也可以逆用,从而进行一些简便计算与因式分解。即:2222bababa完全平方式的特点:1.必须是三项式(或可以看成三项的)2.有两个同号的平方项3.有一个乘积项(等于平方项底数的±2倍)简记口诀:首平方,尾平方,首尾两倍在中央。222baba二、完全平方式1.回答:下列各式是不是完全平方式22222222222122234446154624ababxyxyxxyyaabbxxaabb是是是否是否多项式是否是完全平方式a、b各表示什么表示为:表示为或形式222baba2.填写下表962xx1442yy241a4122xx229124xxyy9)2(6)2(2yxyx2)(ba2)(ba22332xx2211)2(2)2(yy2233)2(2)2(yxyx2)3(x2)12(y2)32(yx是是不是是不是不是a表示:xb表示:3a表示:2yb表示:1a表示:2x+yb表示:33.请补上一项,使下列多项式成为完全平方式222222224221_______249_______3______414_______452______xyabxyabxxy2xy12ab4xyab4y·例1.分解因式:(1)x2+14x+49分析:在(1)中,x2=(x)2,49=72,14x=2·x·7,所以x2+14x+49是一个完全平方式,即x2+14x+49=(x)2+2·x·7+72a22abb2+·+解:(1)x2+14x+49=(x)2+2·x·7+72=(x+7)2.三、新知识或新方法运用例1.分解因式:(2)–x2+4xy–4y2.解:(2)–x2+4xy-4y2=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]=-(x-2y)2三、新知识或新方法运用例2.分解因式:(1)3ax2+6axy+3ay2;(2)(a+b)2-12(a+b)+36.分析:在(1)中有公因式3a,应先提出公因式,再进一步分解。解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2(2)(a+b)2-12(a+b)+36=(a+b)2-2·(a+b)·6+62=(a+b-6)2.三、新知识或新方法运用1:如何用符号表示完全平方公式?a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.2:完全平方公式的结构特点是什么?四、小结完全平方式的特点:1.必须是三项式(或可以看成三项的)2.有两个同号的平方项3.有一个乘积项(等于平方项底数的±2倍)简记口诀:首平方,尾平方,首尾两倍在中央。练习1.下列多项式是不是完全平方式?为什么(1)a2-4a+4;(2)1+4a2;(3)4b2+4b-1;(4)a2+ab+b2.2.分解因式:(1)x2+12x+36;(2)-2xy-x2-y2;(3)a2+2a+1;(4)4x2-4x+1;(5)ax2+2a2x+a3;(6)-3x2+6xy-3y2.