课时提升作业(十四)双曲线方程及性质的应用(25分钟60分)一、选择题(每小题5分,共25分)1.直线l过点(,0)且与双曲线x2-y2=2仅有一个公共点,则这样的直线有()A.1条B.2条C.3条D.4条【解题指南】先判断点与曲线的位置关系,再结合题意求解.【解析】选C.点(,0)即为双曲线的右顶点,过该点有两条与双曲线渐近线平行的直线与双曲线仅有一个公共点,另过该点且与x轴垂直的直线也与双曲线只有一个公共点,故这样的直线只有3条.2.(2015·温州高二检测)已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(-12,-15),则E的方程为()A.-=1B.-=1C.-=1D.-=1【解题指南】中点弦问题,借助点差法求解.【解析】选B.由c=3,设双曲线方程为-=1,kAB==1,设A(x1,y1),B(x2,y2),则-=1,①-=1,②①-②,得-=0,又N(-12,-15)为AB中点,所以x1+x2=-24,y1+y2=-30.所以=.所以==1.所以a2=4.1所以双曲线方程为-=1.3.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2D.3【解题指南】用a,b表示|AB|,由|AB|=4a求a,b的等量关系,进而求离心率.【解析】选B.由题意不妨设l:x=-c,则|AB|=,又|AB|=2×2a,故b2=2a2,所以e===.4.(2015·西安高二检测)过双曲线-=1(a>0,b>0)的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B,C.若=,则双曲线的离心率是()A.B.C.D.【解析】选C.右顶点为A(a,0),则直线方程为x+y-a=0,可求得直线与两渐近线的交点坐标B,C,则=,=.又2=,所以2a=b,所以e=.5.已知F1,F2分别为双曲线的左、右焦点,P为双曲线右支上的任意一点,若的最小值为8a,则双曲线的离心率e的取值范围是()A.(1,+∞)B.(1,2]C.(1,]D.(1,3]【解析】选D.依题意知|PF1|-|PF2|=2a,==4a++|PF2|≥8a,当且仅当=|PF2|时等号成立.此时|PF2|=2a,|PF1|=4a,因为|PF1|+|PF2|≥2c.所以6a≥2c,即1