第十章立体几何一.基础题组1.【2017高考上海,4】已知球的体积为,则该球主视图的面积等于.【答案】【解析】设球的半径为R,则:,解得:,该球的主视图是一个半径为3的圆,其面积为:.2.【2017高考上海,7】如图,以长方体的顶点为坐标原点,过的三条棱所在的直线为坐标轴,建立空间直角坐标系.若的坐标为,则的坐标是.【答案】【解析】将向量的起点平移至点,则平移后的向量与向量关于平面对称,据此可得:.3.【2016高考上海文数】如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是().(A)直线AA1(B)直线A1B1(C)直线A1D1(D)直线B1C1【答案】D【解析】试题分析:只有与在同一平面内,是相交的,其他A,B,C中的直线与都是异面直线,故选D.【考点】异面直线【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好地考查考生分析问题与解决问题的能力、空间想象能力等.4.【2015高考上海理数】若正三棱柱的所有棱长均为,且其体积为,则.【答案】【解析】【考点定位】正三棱柱的体积【名师点睛】简单几何体的表面积和体积计算是高考的一个常见考点,解决这类问题,首先要熟练掌握各类简单几何体的表面积和体积计算公式,其次要掌握平几面积计算方法.柱的体积为,区别锥的体积;熟记正三角形面积为,正六边形的面积为.5.【2015高考上海理数】若圆锥的侧面积与过轴的截面面积之比为,则其母线与轴的夹角的大小为.【答案】【解析】由题意得:母线与轴的夹角为【考点定位】圆锥轴截面【名师点睛】掌握对应几何体的侧面积,轴截面面积计算方法.如圆柱的侧面积,圆柱的表面积,圆锥的侧面积,圆锥的表面积,球体的表面积,圆锥轴截面为等腰三角形.6.【2014上海,理6】若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示).【答案】.【考点】圆锥的性质,圆锥的母线与底面所成的角,反三角函数.7.【2014上海,文8】在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..8.【2013上海,理13】在xOy平面上,将两个半圆弧(x-1)2+y2=1(x≥1)和(x-3)2+y2=1(x≥3)、两条直线y=1和y=-1围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面面积为+8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为______.【答案】2π2+16π9.【2013上海,文10】已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A、B是下底面圆周上两个不同的点,BC是母线,如图.若直线OA与BC所成角的大小为,则=______.【答案】【解析】由题知,.10.【2012上海,理8】若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为__________.【答案】【解析】如图,由题意知,∴l=2.又展开图为半圆,∴πl=2πr,∴r=1,故圆锥的高为,体积11.【2012上海,理14】如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a,c为常数,则四面体ABCD的体积的最大值是__________.【答案】【解析】如图:当AB=BD=AC=CD=a时,该棱锥的体积最大.作AM⊥BC,连接DM,则BC⊥平面ADM,,.又AD=2c,∴.∴VD-ABC=VB-ADM+VC-ADM=.12.【2012上海,文5】一个高为2的圆柱,底面周长为2π.该圆柱的表面积为__________.【答案】6π【解析】由底面周长为2π可得底面半径为1.S底=2πr2=2π,S侧=2πr·h=4π,所以S表=S底+S侧=6π.13.【2011上海,理7】若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为______.【答案】【解析】14.【2011上海,文7】若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积是________.【答案】3π【解析】15.【2010上海,理12】如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A(B)、C、D、O为顶点的四面体的体积为________;【答案】【解析】...