复习提问1、角平分线的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。oBCA12如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?探究1---想一想证明:在△ACD和△ACB中AD=AB(已知)DC=BC(已知)CA=CA(公共边)∴△ACDACB≌△(SSS)∴∠CAD=CAB∠(全等三角形的对应边相等)∴AC平分∠DAB(角平分线的定义)ADBCEABMNC作法:⑴以O为圆心,任意长为半径作弧,交OA于M,交OB于N.⑵分别以M,N为圆心,大于的长为半径作弧,两弧在∠AOB的内部交于点C.⑶作射线OC,射线OC即为所求.12MN0温馨提示:作角平分线是最基本的尺规作图,大家一定要掌握噢!尺规作图:作已知角的平分线的方法已知:AOB.∠求作:AOB∠的平分线.1〉平分平角∠AOB2〉通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系?3〉结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。ABOCD复习提问2、点到直线距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。OPAB我的长度角平分线有什么性质呢?OC是∠AOB的平分线,点P是射线OC上的任意一点,1.操作测量:取点P的三个不同的位置,分别过点P作PDOA⊥,PEOB,⊥点D、E为垂足,测量PD、PE的长.将三次数据填入下表:2.观察测量结果,猜想线段PD与PE的大小关系,写出结论:____________PDPE第一次第二次第三次COBAPD=PEpDE角平分线的性质:角的平分线上的点到角的两边的距离相等题设:一个点在一个角的平分线上结论:它到角的两边的距离相等已知:OC是∠AOB的平分线,点P在OC上,PDOA⊥,PEOB⊥,垂足分别是D、E.求证:PD=PE.AOBPED结论:C证明:∵OC平分∠AOB(已知)∴∠1=2∠(角平分线的定义)∵PDOA⊥,PEOB⊥(已知)∴∠PDO=PEO∠(垂直的定义)在△PDO和△PEO中∠PDO=PEO∠(已证)∠1=2∠(已证)OP=OP(公共边)∴△PDOPEO≌△(AAS)∴PD=PE(全等三角形的对应边相等)PAOBCED12已知:如图,OC平分∠AOB,点P在OC上,PD⊥OA于点D,PE⊥OB于点E求证:PD=PE探究角平分线的性质活动角平分线上的点到角的两边的距离相等AOBPEDPDOA⊥,PEOB⊥∵OP平分∠AOB∴PD=PE.用符号语言表示:角平分线的性质角的平分线上的点到角的两边的距离相等。BADOPEC定理应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离。定理的作用:证明线段相等。小结证明几何命题的一般步骤:1、明确命题的已知和求证2、根据题意,画出图形,并用数学符号表示已知和求证;3、经过分析,找出由已知推出求证的途径,写出证明过程。例1:如图,在△ABC中,∠C=900,AD平分∠BAC交BC于点D,若BC=8,BD=5,则点D到AB的距离为?ACDBEE例2:如图,△ABC的角平分线BM、CN相交于点P。求证:点P到三角形三边的距离均相等。ABCPEFGMN例3:在△OAB中,OE是∠AOB的角平分线,且EA=EB,EC、ED分别垂直OA,OB,垂足为C,D,求证:AC=BD。OABECDA0BMNPC1、如图,OC平分∠AOB,PM⊥OB于点M,PN⊥OA于点N,△POM的面积为6,OM=6,则PN=_______。2小结2、如图:△ABC中,∠C=900,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,求证:CF=EBACDBEF小结3、如图,△ABC中,∠C=90°,AC=CB,AD为∠BAC的平分线,DE⊥AB于点E。求证:△DBE的周长等于AB。ABCDE小结4、如图,求作一点P,使PC=PD,并且点P到∠AOB的两边的距离相等.C●D●ABOP◆这节课我们学习了哪些知识?1、“作已知角的平分线”的尺规作图法;2、角的平分线的性质:角的平分线上的点到角的两边的距离相等。∵OC是∠AOB的平分线,P是OC上一点,又PD⊥OA,PE⊥OB∴PD=PE(角的平分线上的点到角的两边距离相等).EDOABPC几何语言: