电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

函数的单调性与导数VIP免费

函数的单调性与导数_第1页
1/15
函数的单调性与导数_第2页
2/15
函数的单调性与导数_第3页
3/15
函数的单调性与导数函数y=f(x)在给定区间G上,当x1、x2G∈且x1<x2时yxoabyxoab1)都有f(x1)<f(x2),则f(x)在G上是增函数;2)都有f(x1)>f(x2),则f(x)在G上是减函数;若f(x)在(a,b)上是增函数或减函数,则f(x)在(a,b)上具有严格的单调性。(a,b)称为单调区间复习引入:从函数y=x2-4x+3的图像可以看到:yxo11-1在区间(2,+∞)内,切线的斜率为正,函数y=f(x)的值随着x的增大而增大,即>0时,函数y=f(x)在区间(2,+∞)内为增函数.y在区间(-∞,2)内,切线的斜率为负,函数y=f(x)的值随着x的增大而减小,即<0时,函数y=f(x)在区间(-∞,2)内为减函数.y要点一利用导数求函数的单调区间aby=f(x)xoyy=f(x)xoyabf'(x)>0f'(x)<0定义:一般地,设函数y=f(x)在某个区间(a,b)内有导数,如果在这个区间内>0,那么函数在为这个区间内的增函数;如果在这个区间内<0,那么函数在为这个区间内的减函数.由上我们可得以下的结论:如果在某个区间内恒有,则为常数.0)(xf)(xf)(xf)(xf)(xfy)(xfy函数的单调性与导数的关系(1)在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)>0单调递___f′(x)<0单调递___f′(x)=0常函数增减例1:讨论f(x)=x3-6x2+9x-3的单调性.10331yx故f(x)在(-∞,1)和(3,+∞)内是增函数,在(1,3)内是减函数.利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间.当堂练习:做练习册13页例2要点二利用导数判断函数的单调性例2证明:函数f(x)=sinxx在区间π2,π上单调递减.证明f′(x)=xcosx-sinxx2,又x∈π2,π,则cosx<0,sinx>0,∴xcosx-sinx<0,∴f′(x)<0,∴f(x)在π2,π上是减函数.3xy032xy函数在R上递增(2)在区间(a,b)内函数的单调性与导数有如下关系:函数的单调性导数单调递增f′(x)____0单调递减f′(x)____0常函数f′(x)=0≥≤要点三已知函数单调性求参数的取值范围例3已知函数f(x)=x2+ax(x≠0,常数a∈R).若函数f(x)在x∈[2,+∞)上是单调递增的,求a的取值范围.解f′(x)=2x-ax2=2x3-ax2.要使f(x)在[2,+∞)上是单调递增的,则f′(x)≥0在x∈[2,+∞)时恒成立,即2x3-ax2≥0在x∈[2,+∞)时恒成立.∵x2>0,∴2x3-a≥0,∴a≤2x3在x∈[2,+∞)上恒成立.∴a≤(2x3)min.∵x∈[2,+∞),y=2x3是单调递增的,∴(2x3)min=16,∴a≤16.当a=16时,f′(x)=2x3-16x2≥0(x∈[2,+∞))有且只有f′(2)=0,∴a的取值范围是(-∞,16].例4如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.(A)(B)(C)(D)htOhtOhtOhtO一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.如图,函数在或内的图象“陡峭”,在或内的图象“平缓”.)(xfy),0(b)0,(a),(b),(a练习2.函数的图象如图所示,试画出导函数图象的大致形状)(xfy)(xf

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

函数的单调性与导数

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部