电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

中考复习之相似三角形的性质和判定VIP免费

中考复习之相似三角形的性质和判定_第1页
1/8
中考复习之相似三角形的性质和判定_第2页
2/8
中考复习之相似三角形的性质和判定_第3页
3/8
学习必备欢迎下载中考复习之相似三角形的性质和判定知识考点:本节知识包括相似三角形的判定定理、三角形相似的判定及应用,这是中考必考内容。掌握好相似三角形的基础知识尤为重要。精典例题:【例1】如图,点O是△ABC的两条角平分线的交点,过O作AO的垂线交AB于D。求证:△OBD∽△CBO。分析:此题不易得到边的比例关系,但O点是三角形的角平分线的交点,有多对相等的角,故宜从角相等方面去考虑。变式1:如图,在△ABC中,AD=AE,AO⊥DE于O,DE交AB于D,交AC于E,BO平分∠ABC。变式1图OEDCBA例1图54321ODCBA学习必备欢迎下载求证:BCBDBO2。变式2:如图(同变式1图),在△ABC中,O为两内角平分线的交点,过点O作直线交AB于D,交AC于E,且AD=AE。求证:(1)△BDO∽△OEC;(2)CEBDDO2。【例2】如图,在△ABC中,∠BAC=900,AD⊥BC于D,E为AC中点,DE交BA的延长线于F。求证:AB∶AC=BF∶DF。学习必备欢迎下载分析:由于△ABC和△FBD一个是直角三角形,一个是钝角三角形,不可能由这一对三角形相似直接找到对应边而得结论,势必要找“过渡”的线段或线段比,这种寻找“中间”搭桥的线段或线段比是重要的解题技巧。变式:本题条件、结论不变,而只改变图形的位置时,如下图所示,本题又该怎样证明呢?例2图FEDCBA例2变式图FEDCBA学习必备欢迎下载【例3】如图,梯形ABCD中,AD∥BC,BE⊥CD于E,且BC=BD,对角线AC、BD相交于G,AC、BE相交于F。求证:FAFGFC2。分析:由于FG、FA、FC三条线段在同一直线上,不能直接证明一对三角形相似而得结论。根据题设条件易得BE是DC的垂直平分线,于是连结FD得FD=FC,再证△FDG∽△FAD即可。探索与创新:【问题一】如图,∠ACB=∠ADC=900,AC=6,AD=2。问当AB问题一图DCBA例3图GFEDCBA学习必备欢迎下载的长为多少时,这两个直角三角形相似?【问题二】如图,正方形ABCD的边长为1,P是CD边的中点,点Q在线段BC上,设BQ=k,是否存在这样的实数k,使得Q、C、P为顶点的三角形与△ADP相似,若存在,求出k的值;若不存在,请说明理由。跟踪训练:一、填空题:1、如图,在△ABC中,P是边AB上一点,连结CP,使△ACP∽△ABC的条件是。2、在直角坐标系中,已知A(-3,0)、B(0,-4)、C(0,1),过C点作直线l交x轴于D,使得以问题二图QPDCBA学习必备欢迎下载点D、C、O为顶点的三角形与△AOB相似,这样的直线有条。3、如图,在△ABC中,∠C=900,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN=。4、一个钢筋三角架长分别为20cm、50cm、60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的载法有种。5、如图,在锐角△ABC中,BD⊥AC,DE⊥BC,AB=14,AD=4,BE∶EC=5∶1,则CD=。二、选择题:1、下面两个三角形一定相似的是()A、两个等腰三角形B、两个直角三角形C、两个钝角三角形D、两个等边三角形2、如图,点E是平行四边形ABCD的边CB延长线上一点,EA分别交CD、BD的延长线于点F、G,则图中相似三角形共有()A、3对B、4对C、5对D、6对第1题图PCBA第3题图NMCBA第5题图EDCBA选择第2题图FGEDCBA学习必备欢迎下载三、解答题:1、如图,在Rt△ABC中,∠B=900,AB=BE=EF=FC。求证:△AEF∽△CEA。2、如图,在四边形ABCD中,AB⊥BC,AD⊥DC,DE⊥AC于E,交AB于F。求证:△AFD∽△ADB。解答第2题图DFECBA解答第1题图FECBA学习必备欢迎下载3、如图,在梯形ABCD中,AB∥CD,∠D=900,AB=3,DC=7,AD=15,请你在AD上找一点P,使得以P、A、B和以P、D、C为顶点的两个三角形相似吗?若能,这样的P点有几个?并求出AP的长;若不能,请说明理由。4、在边长为1的正方形网格中有A、B、C、D、E五个点,问△ABC与△ADE是否相似?为什么?由此,你还能找出图中相似的三角形吗?若能,请找出来,并说明理由。解答第4题图EDCBA解答第3题图PDCBA

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

中考复习之相似三角形的性质和判定

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部