10.6圆锥曲线的综合问题挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点圆锥曲线的综合问题1.了解圆锥曲线的简单应用.2.理解数形结合的思想.3.能解决直线与圆锥曲线的综合应用等问题.2018浙江,21直线与椭圆、抛物线的位置关系三角形面积、取值范围★★★2017浙江,21直线与抛物线的位置关系不等式、最值、取值范围2016浙江文,19直线与抛物线的位置关系取值范围2015浙江文,19直线与抛物线的位置关系圆、三角形面积2014浙江,21直线与圆的位置关系不等式分析解读1.圆锥曲线的综合问题是高考的热点之一,主要考查两大问题:一是根据条件求出平面曲线的方程;二是通过方程研究平面曲线的性质.2.考查点主要有:(1)圆锥曲线的基本概念和性质;(2)与圆锥曲线有关的最值、对称、位置关系等综合问题;(2)有关定点、定值问题,以及存在性等探索性问题.3.预计2020年高考试题中,圆锥曲线的综合问题仍是压轴题之一,复习时应高度重视.炼技法【方法集训】方法1圆锥曲线中的最值和范围问题的求解方法1.(2018浙江9+1高中联盟期中,21)如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:+y2=1上一点,从原点O向圆M:+=作两条切线,分别与椭圆C交于点P,Q,直线OP,OQ的斜率分别记为k1,k2.(1)求证:k1k2为定值;(2)求四边形OPMQ面积的最大值.1解析(1)证明:因为直线OP:y=k1x,OQ:y=k2x与圆M相切,所以=,=,可知k1,k2是方程(3-2)k2-6x0y0k+3-2=0的两个不相等的实数根,所以3-2≠0,k1k2=,因为点M(x0,y0)在椭圆C上,所以=1-,所以k1k2==-.(2)易知直线OP,OQ都不能落在坐标轴上,设P(x1,y1),Q(x2,y2),因为2k1k2+1=0,所以+1=0,即=,因为P(x1,y1),Q(x2,y2)在椭圆C上,所以==,整理得+=2,所以+=1,所以OP2+OQ2=3.因为S四边形OPMQ=(OP+OQ)·=(OP+OQ),OP+OQ≤=,所以S四边形OPMQ的最大值为1.22.(2018浙江台州高三期末质检,21,15分)已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,左顶点为A,点P(,)在椭圆C上,且△PF1F2的面积为2.(1)求椭圆C的方程;(2)过原点O且与x轴不重合的直线交椭圆C于E,F两点,直线AE,AF分别与y轴交于点M,N.求证:以MN为直径的圆恒过焦点F1,F2,并求出△F1MN面积的取值范围.解析(1) =×2c×=2,∴c=2,(2分)又点P(,)在椭圆C上,∴+=1,∴a4-9a2+8=0,解得a2=8或a2=1(舍去),又a2-b2=4,∴b2=4,∴椭圆C的方程为+=1.(5分)(2)由(1)可得A(-2,0),F1(-2,0),F2(2,0),当直线EF的斜率不存在时,E,F为短轴的两个端点,不妨设M(0,2),N(0,-2),∴F1M⊥F1N,F2M⊥F2N,∴以MN为直径的圆恒过焦点F1,F2.(7分)当直线EF的斜率存在且不为零时,设直线EF的方程为y=kx(k≠0),设点E(x0,y0)(不妨设x0>0),则点F(-x0,-y0),由消去y得x2=,∴x0=,y0=,∴直线AE的方程为y=(x+2),3 直线AE与y轴交于点M,∴令x=0,得y=,即点M,同理可得点N,∴=,=,∴·=0,∴F1M⊥F1N,同理,F2M⊥F2N,则以MN为直径的圆恒过焦点F1,F2,(12分)当直线EF的斜率存在且不为零时,|MN|===2·>4,∴△F1MN的面积S=|OF1|·|MN|>4,又当直线EF的斜率不存在时,|MN|=4,∴△F1MN的面积为|OF1|·|MN|=4,∴△F1MN面积的取值范围是[4,+∞).(15分)方法2定点、定值问题的求法1.(2017浙江镇海中学模拟卷(四),21)已知椭圆C:+=1(a>b>0)的离心率为,且椭圆C上的点到其焦点的距离的最小值为1.(1)求a,b的值;(2)过点P(3,0)作直线l交C于A,B两点,①求△AOB面积S的最大值;②设Q为线段AB上的点,且满足=,证明:点Q的横坐标xQ为定值.解析(1)由题意知,所以a=2,c=1,因此b==,故a=2,b=.(4分)4(2)显然直线l的斜率存在且不为0,故可设l:y=k(x-3)(k≠0),联立消去y,并整理,得(3+4k2)x2-24k2x+36k2-12=0,其中Δ=48(3-5k2)>0.设A(x1,y1),B(x2,y2),则有x1+x2=,x1·x2=.(6分)①原点O到直线l的距离d=,|AB|=|x1-x2|=·,所以S△AOB=|AB|·d=6·|k|·=6·.(8分)设t=,则k2=,其中t∈,则S=6·=·≤·=.当且仅当9-27t=27t-5,即t=时,取等号.(10分)故△AOB面积S的最大值为.②证明:设==λ,则=-λ,=λ,(12分)所以3-x1=-λ(x2-3),xQ-x1=λ(x2-xQ),消去λ得,xQ===,故点Q的横坐标xQ为定值.(15分)52.(2017浙江五校联考(5月),21)如图,已知椭圆Γ:+=1(a>b>0)经过不同的三点A,B,C(C在第三象限),线段BC的中点在直线OA上.(1)求椭圆Γ的方程及点C的坐标;(2)...