梁启超纪念中学第四章四边形的性质探索黄峰松第四章四边形的性质探索§4.1.1平行四边形的性质(一)知识与技能目标:1.平行四边形的概念.2.平行四边形的性质.过程与方法目标:1.经历探索平行四边形有关概念和性质的过程,使学生理解平行四边形的概念及性质.2.探索并掌握平行四边形的对边相等、对角相等的性质.情感态度与价值观目标:在进行探索的活动过程中发展学生的探究意识和合作交流的习惯.教学重点平行四边形的性质.教学难点平行四边形的性质的理解.教学方法探索—归纳法.教具准备长方形白纸两张、剪刀、一张半透明的纸投影片四张:第一张:剪纸规则(记作§4.1.1A);第二张:做一做(记作§4.1.1B);第三张:性质(记作§4.1.1C);第四张:议一议(记作§4.1.1D).教学过程Ⅰ.巧设情景问题,引入课题[师]同学们拿出准备好的剪刀、白纸一张,我们来个剪纸活动(出示投影片§4.1.1A).将一张纸对折,剪下两张叠放的三角形纸片,设法找到某一边的中点,记作点O,将上层的三角形纸片绕点O旋转180°,下层的三角形纸片保持不动.此时:(1)两张纸片拼成了怎样的图形?它是四边形吗?(2)这个图形中有哪些相等的角?有没有互相平行的线段?(3)用简洁的语言刻画这个图形的特征,并与同伴交流.[师]在剪纸时,要注意:截口线是直线,并且要使上、下两张纸对齐.(学生进行剪纸活动)(第1页,共106页)梁启超纪念中学第四章四边形的性质探索黄峰松[生1]老师,我剪下的这两个三角形是全等三角形,然后我把这两个重叠的三角形的两顶点重合对折一下,折点就是这一边的中点O,(学生演示),再把上层的三角形纸片绕点O旋转180°,下层的三角形纸片保持不动,这时两张纸片拼成了如右图所示的图形,它是四边形.[生2]找三角形的某一边的中点时,也可以先量出这一边的长度,然后再找中点,把重叠三角形的上层的三角形绕中点旋转180°,下层的三角形纸片保持不动,这时,两个三角形纸片拼成了四边形.[师]很好,大家经过剪纸、拼图的活动,把问题(1)解决了,那第(2)问呢?[生3]刚才剪出的两个三角形全等,全等三角形的对应角相等,所以由这两个全等三角形拼成的四边形中有相等的角.(如下图)∠1=∠3∠2=∠4∠D=∠B线段AB平行于线段CD,线段AD平行于线段BC.[生4]老师,因为∠1=∠3,∠2=∠4,所以:∠DAB=∠DCB.[师]对,那大家想一想:为什么线段AB与线段CD平行,线段AD与线段BC平行呢?(学生讨论、得证)[生5]因为∠1与∠3是线段AB与线段CD被线段AC所截得到的内错角,内错角相等,两直线平行.所以AB平行于CD.∠2与∠4是线段AD与线段BC被线段AC所截得到的内错角.因为∠2=∠4,所以AD平行于BC.[师]这位同学总结得正确吗?[生6]正确.[生7]但说法上有所欠缺.因为内错角是两条直线被第三条直线所截,在两条直线之间,且位置交错的两个角,不能说两线段被第三条线段所截,应该说:两线段所在的直线被第三条线段所在的直线所截.[师]同学们说得挺好,尤其是生7,那如何用语言叙述这个图形的特征呢?[生8]这个四边形的上、下两边平行,左右两边平行,又互相相等.(第2页,共106页)梁启超纪念中学第四章四边形的性质探索黄峰松[生9]这个四边形的相对的角相等.[师]很好,我们把四边形中不相邻的边,即相对的边叫对边,相对的角叫对角,所以,这个四边形的特征为:对边平行,对角相等,对边相等.我们把“两组对边分别平行的四边形”就叫做平行四边形.(parallelogram)今天,我们就来探讨第三章:四边形性质探索的第一节:平行四边形的性质.Ⅱ.讲授新课[师]在四边形中,我们常见的实用价值最大的就是平行四边形.如:汽车的防护链、无轨电车的击电杆、竹篱笆格子等.(出示这三种实物的照片或投影片)两组对边分别平行的四边形是平行四边形,在这个定义中,有两个条件:(1)四边形;(2)两组对边分别平行.一个四边形必须具备两组对边分别平行,才是平行四边形.反过来,平行四边形,就一定是有两组对边分别平行的一个四边形.如下图:在四边形ABCD中,AB∥CD,AD∥BC,那么四边形ABCD是平行四边形.反之:四边形ABCD是平行四边形,那么,AB∥CD,AD∥BC.平行四边形用符号“”表示,平行四边形ABCD记作“ABCD”...