电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

1.2应用举例VIP免费

1.2应用举例_第1页
1/14
1.2应用举例_第2页
2/14
1.2应用举例_第3页
3/14
《正余弦定理的应用举例》辽宁省建昌县高级中学刘丹人教B版必修五第一章1.21.正弦定理和余弦定理的基本公式是什么?复习巩固2.正弦定理和余弦定理分别适合解哪些类型的三角形?正弦定理:一边两角或两边与对角;余弦定理:两边与一角或三边.复习巩固应用举例:测量距离问题问题1:测量不相通的两点之间的距离修建铁路时要在一个山体上开挖一隧道。需要测量隧道口D,E之间的距离。测量人员在山的一侧选取点C。因为有障碍物无法测得CE,CD的距离。现测得CA=482.80米,CB=631.50米,,又测得A,B两点到隧道口的距离分别是80.13米,40.24米,,(A,D,E,B在同一直线上)求隧道DE的长。56.3ACBBACED解:由余弦定理得BACED2222cosABACBCACBCACB22482.80631.502482.80631.50cos56.3293557.0525541.81421()ABDEABADBE米421答:隧道的长约为米。问题2:一个不可到达点的距离测量A、B两点在河的两岸(B点不可到达),如何测量这两点之间的距离。测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=60o,∠ACB=75o,求A、B两点间的距离(精确到0.1m).解:根据正弦定理,得答:A、B两点间的距离为75.1米。sinsinsin55sinsinsin55sin7555sin7575.1()sin(1806075)sin45ABACACBABCACACBACBABABCABCm分析:所求的边AB的对角是已知的,又知三角形的一边AC,根据三角形内角和定理可计算出边AC的对角,根据正弦定理,可以计算出边AB.问题问题33::测量测量AA、、BB两点都(不可到达)的距离。两点都(不可到达)的距离。分析:用例2的方法,可以计算出河的这一岸的一点C到对岸两点的距离,再测出∠BCA的大小,借助于余弦定理可以计算出A、B两点间的距离。ABCABCD解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得∠BCA=α,ACD=∠β,CDB=∠γ,BDA=∠δ.在∆ADC和∆BDC中,应用正弦定理得sin()sin()sin()sin180()sinsinsin()sin180()aaACaaBC计算出AC和BC后,再在ABC中,应用余弦定理计算出AB两点间的距离222cosABACBCACBCABCD30°45°30°60°分析:1.在△ABD中求AB2.在△ABC中求AB练习:选定两个可到达点C、D;→测量C、D间的距离及∠ACB、∠ACD、∠BDC、∠ADB的大小;→利用正弦定理求AC和BC;→利用余弦定理求AB.测量两个不可到达点之间的距离方案:形成规律解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解变式训练:如图,为了计算渭河岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两个测量点.现测得AD⊥CD,AD=100m,AB=140m,∠BDA=60°,∠BCD=135°,求两景点B与C之间的距离(假设A,B,C,D在同一平面内,测量结果保留整数;参考数据:2=1.414,3=1.732,5=2.236).解在△ABD中,设BD=xm,则BA2=BD2+AD2-2BD·AD·cos∠BDA,即1402=x2+1002-2×100×x×cos60°,整理得x2-100x-9600=0,解得x1=160,x2=-60(舍去),故BD=160m.在△BCD中,由正弦定理得:BCsin∠CDB=BDsin∠BCD,又AD⊥CD,∴∠CDB=30°,∴BC=160sin135°·sin30°=802≈113(m).即两景点B与C之间的距离约为113m.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部