25.2.用列举法求概率(树状图)一师一优课制作者石脑初中黄友安教学目标1.用画树形图法计算概率,并通过比较概率大小作出合理的决策.2.经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.3.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.(2016宜昌)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.例1:(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.【分析】(1)根据随机事件的概念可知是随机事件;(2)求概率要画出树状图分析后得出.解:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法.【点评】此题考查树状图法求概率.树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.试一试:例2.(2016·重庆市B卷)点P的坐标是(a,b),从﹣2,﹣1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是.【分析】先画树状图展示所有20种等可能的结果数,再根据第二象限点的坐标特征找出点P(a,b)在平面直角坐标系中第二象限内的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有20种等可能的结果数,其中点P(a,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a,b)在平面直角坐标系中第二象限内的概率=4/20=1/5故答案为:1/5.变:在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后再放回摇匀,第二次再从袋中摸出一个,那么两次都摸到黄色球的概率是_____.4/9练习1.将一个均匀的硬币上抛三次,结果为三个正面的概率_____________.解:开始开始反反正正正正反反反反正正正正反反反反反反正正反反正正正正第一次:第二次:第三次:总共有8种结果,每种结果出现的可能性相同,而三次正面朝上的结果有1种,因此三次正面朝上的概率为1/8。1/8练习2.小马虎晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,问小马虎正好穿的是相同的一双袜子的概率是多少?解:设两双袜子分别为A1、A2、B1、B2,则B1A1B2A2开始A2B1B2A1B1B2A1A1B2A1A2B1所以穿相同一双袜子的概率为31124练习3、(2016·湖北荆门)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是.练习4.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,当有三辆汽车经过这个十字路口时,求下列事件的概率(1)三辆车全部继续直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转1/273/27=1/97/27练习5、一次物理竞赛中,有一道四选二的双项选择题,评分标准是:多选或只要选错一项就不得分,只选一项且对得1分,全对得3分.(1)小娟在不会做的情况下,根据题意决定任选一项作为答案,求她得到1分的概率.(2)小娜在不会做的情况下,根据题意决定任选两项作答案,用列表法表示小娜答案的所有可能结果,并求她得到3分的概率.练习6、练习7、染色体隐性遗传病,只有致病基因在纯合状态(dd)时才会发病,在杂合状态(Dd)时,由于正常的显性基因型D存在,致病基因d的作用不能表现出来,但是自己虽不发病,却能将病传给后代,常常父母无病,子女有病,如下表所示:母亲基因型DdDd父亲基因型DdDDDDddDddd(1)子女发病的概率是多少?(2)如果父亲基因型为Dd,母亲基因型为dd,问子女发病的概率是多少?41P2142P(发病)练习8思考题:为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A...