求变力做功的几种方法W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,本文对变力做功问题进行归纳总结如下:一、等值法等值法即若某一变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。而恒力做功又可以用W=FScosa计算,从而使问题变得简单。例1、如图1,定滑轮至滑块的高度为h,已知细绳的拉力为F牛(恒定),滑块沿水平面由A点前进s米至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。二、微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。例2、如图2所示,某力F=10牛作用于半径R=1米的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为:A0焦耳B20π焦耳C10焦耳D20焦耳三、平均力法如果力的方向不变,力的大小对位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,利用功的定义式求功。例3、一辆汽车质量为105千克,从静止开始运动,其阻力为车重的0.05倍。其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。当车前进100米时,牵引力做的功是多少?四、图象法如果力F随位移的变化关系明确,始末位置清楚,可在平面直角坐标系内画出F—x图象,图象下方与坐标轴所围的“面积”即表示功。五、能量转化法求变力做功功是能量转化的量度,已知外力做功情况可计算能量的转化,同样根据能量的转化也可求外力所做功的多少。因此根据动能定理、机械能守恒定律、功能关系等可从能量改变的角度求功。1、用动能定理求变力做功动能定理的内容是:外力对物体所做的功等于物体动能的增量。它的表达式是W外=ΔEK,W外可以理解成所有外力做功的代数和,如果我们所研究的多个力中,只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。例4、如图4所示,AB为1/4圆弧轨道,半径为0.8m,BC是水平轨道,长3m,BC处的摩擦系数为1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。2、用机械能守恒定律求变力做功如果物体只受重力和弹力作用,或只有重力或弹力做功时,满足机械能守恒定律。如果求弹力这个变力做的功,可用机械能守恒定律来求解。例5、如图5所示,质量m为2千克的物体,从光滑斜面的顶端A点以v0=5米/秒的初速度滑下,在D点与弹簧接触并将弹簧压缩到B点时的速度为零,已知从A到B的竖直高度h=5米,求弹簧的弹力对物体所做的功。3、用功能原理求变力做功功能原理的内容是:系统所受的外力和内力(不包括重力和弹力)所做的功的代数和等于系统的机械能的增量,如果这些力中只有一个变力做功,且其它力所做的功及系统的机械能的变化量都比较容易求解时,就可用功能原理求解变力所做的功。例6、质量为2千克的均匀链条长为2米,自然堆放在光滑的水平面上,用力F竖直向上匀速提起此链条,已知提起链条的速度v=6米/秒,求该链条全部被提起时拉力F所做的功。-1-4、用公式W=Pt求变力做功例7、质量为4000千克的汽车,由静止开始以恒定的功率前进,它经100/3秒的时间前进425米,这时候它达到最大速度15米/秒。假设汽车在前进中所受阻力不变,求阻力为多大。课后训练题1、如图所示,质量为2kg的物体从A点沿半径为R的粗糙半球内表面以10m/s的速度开始下滑,到达B点时的速度变为2m/s,求物体从A运动到B的过程中,摩擦力所做的功是多少?2、质量为5×105kg的机车,以恒定功率从静止开始起动,所受阻力是车重的0.06倍,机车经过5min速度达到最大值108km/h,求机车的功率和机车在这段时间内所做的功.3、用锤子把铁钉打入木块中,设每次打击锤子时给铁钉的动能相同,铁钉进入木块所受的阻力跟打入的深度成正比.如果钉子第一次被打入木块的深度为2cm...