授课主题空间几何体教学内容【知识回顾】棱柱、棱锥、棱台的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点空间几何体的表面积与体积(一)空间几何体的表面积1、棱柱、棱锥的表面积:各个面面积之和第1页共10页T-棱柱、棱锥、棱台2、圆柱的表面积3圆锥的表面积4、圆台的表面积5球的表面积(二)空间几何体的体积1柱体的体积2锥体的体积3台体的体积4球体的体积【典型例题】例1:(1)下列命题正确的有个.①有两个面互相平行,其余各面都是四边形的多面体一定是棱柱;②有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;③用一个平面去截棱锥,底面与截面之间的部分是棱台;④侧面都是矩形的棱柱是长方体.(2)在正方体上任意选择4个顶点,它们可能是如下各种几何形(体)的4个顶点,这些几何形(体)是.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.例2:①底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为,它的对角线的长分别是和,则这个棱柱的侧面积是②已知一个长方体共一顶点的三个面的面积分别是、、,这个长方体的对角线长是________第2页共10页___;若长方体的共顶点的三个侧面面积分别为,则它的体积为___________新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆例3:长方体ABCD—A1B1C1D1中,AB=2,BC=3,AA1=5,则一只小虫从A点沿长方体的表面爬到C1点的最短距离是.例4:有一个正四棱台形状的油槽,可以装油,假如它的两底面边长分别等于和,求它的深度为多少?1、棱长都是的三棱锥的表面积为2、一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆3、正方体中,是上底面中心,若正方体的棱长为,则三棱锥的体积为_____________新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆4、棱台上、下底面面积之比为,则棱台的中截面分棱台成两部分的体积之比是5、若长方体的一个顶点上的三条棱的长分别为,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是______________新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆第3页共10页课堂练习课堂练习6、一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,求该三角形的斜边长.【知识回顾】圆柱、圆锥、圆台与球的结构特征(1)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面...