体验感悟二次函数在实际情景中的运用当我们在放假观光旅游享受大自然的美丽的风光之时,你可能被公园中人造喷泉喷出的抛物线型的水流所陶醉,当你来到潺潺的溪水边,你可能会发现河面建造的一座座美丽的石拱桥,……等等,这时你是否意识到其中蕴涵的数学问题?事实上喷泉形成的水柱,拱桥的形状都给我们以抛物线的形状,而我们知道它们与我们学过的二次函数密切相关.新课程标准明确指出:二次函数是反映现实世界的数量关系和变化规律的数学模型;因此我们可以从数学的视角,利用二次函数研究上述实际问题,从而初步体验数学中的“问题情景——建立模型——解释应用——回顾拓展”的探究方式,提高数学的建模意识、综合分析问题、解决问题的能力.本文从07年中考试题中采集几朵浪花加以剖析与读者共赏.例1、(07永州市)如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.①求此桥拱线所在抛物线的解析式.②桥边有一船浮在水面部分高4m,最宽处12m的河鱼餐船,试探索此船能否开到桥下?说明理由.分析:分析:题目已将实际问题(建立了平面直角坐标系)抽象成了二次函数的数学模型的雏形.①欲求二次函数的解析式,观察图形及条件(主拱离水面的最大高度为8米,主拱宽为24米),可知抛物线顶点的坐标为(0,8)因而可设抛物线所对应的函数关系式为y=ax2+8,又抛物线过原点(12,0),所以有0=a×122+8,故181a,所以抛物线的关系式为y=81812x;②欲判断船能否开到桥下,因为河鱼餐船最宽处为12m,船如果沿主拱中间不能通行,则其它的方式则更无法开到桥下.现在我们来探究沿桥拱中央行驶的情形.当x=6时,代入抛物线的关系式为y=81812x得y=8)26(1812=4米,所以从理论上讲,河鱼餐船刚好能驶入桥拱下纳凉.评注:解决具有实际问题情境的应用题,首先要将实际问题转化为数学问题,建立起相应的数学模型,然后在将实际问题中提供的数据转化为数学模型中的相关的数据.比如:实际问题中“主拱离水面的最大高度为8米,跨度为24米”可转化为抛物线顶点的坐标为(0,8),抛物线与x轴交点坐标为(-12,0),(12,0)”等.最后利用学过相关的数学知识求得问题的答案.求解抛物线的解析式时,借助待定系数法常常有3种设法:①顶点式y=a(x-m)2+n其中(m,n)为抛物线顶点的坐标;②交点式y=a(x-x1)(x-x2)其中x1、x2为抛物线与x轴交点的横坐标;③一般式y=ax2+bx+c是已知抛物线上任意(无特殊的关系)3点的坐标时采用.另外在解题过程中还要充分发挥待定系数法、配方法、数形结合思想、方程思想等数学思想的指导作用..例2、(07浙江丽水)廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为211040yx,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E、F处要安装两盏警示灯,求这两盏灯的水平距离EF(精确到1米).分析:本题创设了一个以我国古老的文化遗产——廊桥为载体,考查二次函数及由已知函数值求平行于x轴直线上两点之间距离的问题的数学模型.解决问题的关键是把实际问题中的条件转化为数学条件.由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.yOAEFB故有-401x2+10=8,即x2=80,x1=54x2=-54所以两盏警示灯之间的水平距离为|x1-x2|=|54-(-54)|=85≈18(m).评注:上述两例都是以拱桥为载体,让学生根据实际问题先确定二次函数解析式,然后进一步利用函数关系式,进行自变量与函数值之间的转换,只不过是本题是由函数值求自变量的值去解决相应实际问题的.这样就将二次函数巧妙地与一元二次方程(组)联系在一起.在本例中运用了两个特殊点A、B(在平行于x轴的直线上)两个点之间的距离公式为|BAxx|.例3、(06武汉市课改实验区)连接着汉口集家咀的江汉三桥(晴川桥),是一座下承式钢管混凝土系杆拱桥.它犹如一道美丽的彩虹跨越汉江,是江城武汉的一道靓丽景观.桥的拱肋ACB视为抛物线的一部分...