初三数学实数与整式知识精讲一.本周教学内容:实数与整式二.复习知识要点:1.实数的分类:2.实数的有关概念:数轴,相反数,倒数,绝对值,科学记数法,近似数与有效数字,平方根与立方根。3.实数的运算顺序4.指数的意义:(p为正整数,)5.三种非负数:6.多项式与单项式,整式7.同类项8.幂的运算法则:(1)(m、n为整数,)(2)(m、n为整数,)(3)(m为整数,)(4)(m、n为整数,)并注意幂运算的逆用。9.乘法公式:【典型例题】例1.填空:(1)比较大小:(2)近似数0.033万精确到________位,有________个有效数字,用科学记数法表示作________万。(3)的平方根是________。(4)若与互为相反数,则的值为________。分析:(1)两个负数比较大小,绝对值大的数反而小,故。(2)0.033万中的整数部分表示万位,∴最后的3表示十位,故精确到十位。(3)(4)∵互为相反数的数的和为零又∵与均为非负数且代入得:原式例2.计算:(1)(2)解:(1)原式(2)原式分析:计算题重点注意运算法则、顺序、技巧、运算符号,同时注意:,(,p为正整数)等。例3.下列各式中,计算正确的是()A.B.C.D.分析:(A)中无同类项合并,(B)中将与相混,(D)中,故选C。解:选C例4.计算:(1)(2)(3)(4)解:(1)原式(2)原式(3)原式(3)原式【模拟试题】一.填空题(每空3分,共51分)1.的相反数是___________,的绝对值是___________。2.比较大小(用“>”、“<”或“=”连接)3.真空中光的速度约为300000000m/s,用科学记数法表示为___________m/s。4.的平方根是___________,8的立方根是___________。5.用计算器计算,按键顺序是,则显示的结果是___________。6.计算:___________,___________。7.已知,则___________。8.在中,有理数有___________个。9.数轴上表示实数a,b的点的位置如图,化简___________。10.观察下列各式:,……,把以上各式所含的规律用含n(n为正整数)的等式表示为______________________。11.如果的小数部分为a,那么___________。12.如图,用半径为4cm的半圆形铁皮剪一块正方形零件,则正方形零件的最大边长为___________cm。二.选择题(每小题4分,共40分)13.的倒数是()A.B.C.D.214.等于()A.B.C.D.15.在这四个数中,任取两个数相乘,所得积最大的是()A.12B.-12C.6D.16.下表是我国四个城市某个月的平均气温,那么四个城市中,该月平均气温最低的是()北京长沙南京哈尔滨-4.6℃3.8℃2.8℃-19.6℃A.北京B.长沙C.南京D.哈尔滨17.中,,高线,则的面积(精确到0.1,……)是()A.4B.4.4C.4.5D.4.818.下列各式中正确的是()A.B.C.D.19.如果是整数,那么N可以是()A.B.C.D.20.已知a是实数,且,那么的值是()A.2或-3B.2C.3或-2D.321.a,b,c为的三边长,且,则c的取值范围是()A.B.C.D.22.观察下列算式:,,……,猜想的末位数字是()A.2B.4C.6D.8三.解答题(共59分)23.计算:(15分)(1)(2)(3)24.(8分)m、n为实数,且,求m、n的值。25.(9分)已知,且,试比较的大小,并用“<”号把它们连接起来。26.(9分)如图,在中,,D是AC上一点,DE⊥AB于E,若,求BE和CD的长。27.(10分)银行整存整取的年利率如下表:小红今秋将升入高中一年级,家长打算为她在银行存款10000元,以供3年后上大学使用,假设此期间的年利率不变,问:采用哪种存款方式能使3年后的收益最大?(备用数据:;说明:利息=本金×利率×期数,如二年期存款,年利率是2.43%,存入100元,二年到期后的利息是元)28.(8分)设有无数个实数(其中n是自然数),称是无穷连分式。例如:,其中。请将也写成无穷连分式,并写出的值(不必证明)。[参考答案]一.填空题。1.2.3.4.5.6.7.8.29.10.11.12.二.选择题。13.C14.B15.A16.D17.C18.C19.A20.B21.C22.D三.解答题。23.(1)原式(2)原式(3)原式24.解:由题意可得:25.解:26.解:27.解:1年期存三次:(元)1年期后再存二年期:(元)3年期存一次:(元)∴存三年期获利最高,为810元28.解:与类似其中,n为正整数。