v1.0可编辑可修改1全等三角形判定一(SSS,SAS)(提高)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】【高清课堂:379109全等三角形判定一,基本概念梳理回顾】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果''AB=AB,''AC=AC,''BC=BC,则△ABC≌△'''ABC.要点二、全等三角形判定2——“边角边”1.全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB=''AB,∠A=∠'A,AC=''AC,则△ABC≌△'''ABC.注意:这里的角,指的是两组对应边的夹角.2.有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC与△ABD中,AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.v1.0可编辑可修改2【典型例题】类型一、全等三角形的判定1——“边边边”1、如图,在△ABC和△ADE中,AB=AC,AD=AE,BD=CE,求证:∠BAD=∠CAE.【答案与解析】证明:在△ABD和△ACE中,ABACADAEBDCE∴△ABD≌△ACE(SSS)∴∠BAD=∠CAE(全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质.要证∠BAD=∠CAE,先找出这两个角所在的三角形分别是△BDA和△CAE,然后证这两个三角形全等.举一反三:【高清课堂:379109全等三角形的判定(一)同步练习6】【变式】已知:如图,AD=BC,AC=BD.试证明:∠CAD=∠DBC.v1.0可编辑可修改3【答案】证明:连接DC,在△ACD与△BDC中ADBCACBDCDDC公共边∴△ACD≌△BDC(SSS)∴∠CAD=∠DBC(全等三角形对应角相等)类型二、全等三角形的判定2——“边角边”2、如图,AD是△ABC的中线,求证:AB+AC>2AD.【思路点拨】延长AD到点E,使AD=DE,连接CE.通过证全等将AB转化到△CEA中,同时也构造出了2AD.利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD到点E,使AD=DE,连接CE.在△ABD和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD.∴△ABD≌△ECD.∴AB=CE. AC+CE>AE,∴AC+AB>AE=2AD.即AC+AB>2AD.v1.0可编辑可修改4【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB+AC>2AD,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD绕点D逆时针旋转180°得到△CED,也就把AB转化到△CEA中,同时也构造出了2AD.若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.举一反三:【变式】(2014秋?慈溪市校级期中)如图,把两根钢条AA′,BB′的中点连在一起,可以做成一个测量内槽宽的卡钳,卡钳的工作原理利用了三角形全等判定定理.【答案】SAS.解:卡钳的工作原理利用了三角形全等判定定理SAS,理由如下: O是AA′,BB′的中点,∴AO=A′O,BO=B′O,又 ∠AOB与∠A′OB′是对顶角,∴∠AOB=∠A′OB′,在△AOB和△A′OB′中,,∴△AOB≌△A′OB′(SAS),∴A′B′=AB,v1.0可编辑可修改5∴只要量出A′B′的长度,就可以知道工作的内径AB是否符合标准.3、已知,如图:在△ABC中,∠B=2∠C,AD⊥BC,求证:AB=CD-BD.【思路点拨】在DC上取一点E,使BD=DE,则△ABD≌△AED,所以AB=AE,只要再证出EC=AE即可.【答案与解析】证明:在DC上取一点E,使BD=DE AD⊥BC,∴∠ADB=∠ADE在△ABD和△AED中,BD=DE,AD=AD.∴△ABD≌△AED(SAS).∴AB=AE,∠B=∠AED.又 ∠B=2∠C=∠AED=∠C+∠EAC.∴∠C=∠EAC.∴AE=EC.∴AB=AE=EC=CD—DE=CD—BD.【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角...