在做工程造价时,有些时候工程量的计算是没必要计算的那么准确的,那么一小点工程量对总造价是没什么太大的影响的.比如楼主所说的弧形阳台的面积,主要是阳台弧形那部分的面积,其实楼主可以采用一个细线沿弧形阳台的外边线测量一下,然后根据图纸的比例和线的长度计算出实际的弧长,然后利用公式就可以求出弧形那部分的面积了 F=1/2*[r*(L-C)+C*h] 其中 L 代表的是弧长,C 代表的是弦长,h 代表从圆弧部分到弦的最长垂直距离.在计算弧形梁时可以采用同样的办法计算出梁的实际长度,答案就出来了. 圆弧面积公式: 0.5*× 弧长× 半径 或 圆面积× 圆心角÷ 360 度 用扇形面积减三角形面积 扇形面积公式_s =1/2 L*r S-面积 L-弧长 r-圆的半径 关键就是圆弧所对圆的 R 要知道 C=2r+2πr×(a/360) S=πr2×(a/360) r— 扇形半径 a— 圆心角度数 球的体积公式: V 球=4/3 π r^3 球的面积公式: S 球=4π r^2 ***************************************************************** 附:推导过程(可能会看不懂(涉及到了大学的微积分),就当学点知识吧,呵呵) 1.球的体积公式的推导 基本思想方法: 先用过球心 的平面截球 ,球被截面分成大小相等的两个半球,截面⊙ 叫做所得半球的底面. (l)第一步:分割. 用一组平行于底面的平面把半球切割成 层. (2)第二步:求近似和. 每层都是近似于圆柱形状的“小圆片”,我们用小圆柱形的体积近似代替“小圆片”的体积,它们的和就是半球体积的近似值. (3)第三步:由近似和转化为精确和. 当 无限增大时,半球的近似体积就趋向于精确体积. 2.定理:半径是 的球的体积公式为: . 3.体积公式的应用 求球的体积只需一个条件,那就是球的半径.两个球的半径比的立方等于这两个球的体积比. 球内切于正方体,球的直径等于正方体的棱长;正方体内接于球,球的半径等于正方体棱长的 倍(即球体对角钱的一半);棱长为 的正四面体的内切球的半径为 ,外接球半径为 . 也可以用微积分来求,不过不好写 ====================================================================== 球体面积公式: 可用球的体积公式+微积分推导 定积分的应用:旋转面的面积。好多课本上都有,推导方法借助于曲线的弧长。 让圆 y =√(R^2-x ^2)绕 x 轴旋转,得到球体 x^2+y^2+z^2≤R^2。求球的表面积。 以 x 为积分变量,积分限是[-R,R]。 在...