反比例函数与一次函数交叉综合问题 【前言】 初中数学所涉及的函数无非也就一次函数,反比例函数以及二次函数。二次函数基本上只会考和一次函数的综合问题,二次函数与反比例函数基本不会涉及。所以如何掌握好一次函数与反比例函数的综合问题就成为了又一重点。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。 【例1】 2010,西城,一模 将直线4yx沿y轴向下平移后,得到的直线与x轴交于点904,A,与双曲线(0 )kyxx交于点B . ⑴ 求直线AB 的解析式; ⑵ 若点B 的纵标为m ,求k 的值(用含有m 的式子表示). 【思路分析】这种平移一个一次函数与反比例函数交与某一点的题目非常常见,一模中有多套题都是这样考法。题目一般不难,设元以后计算就可以了。本题先设平移后的直线,然后联立即可。比较简单,看看就行. 【解析】将直线xy4沿y轴向下平移后经过x轴上点A(0,49), 设直线AB 的解析式为bxy 4. 则0494b. 解得9b. ∴ 直线AB 的解析式为94xy. -8-6-4-2-2642642OBAyx 图 3 ( 2)设点B 的坐标为,Bxm , 直线AB 经过点B , ∴94Bxm. ∴49 mxB. ∴ B 点的坐标为9 ,4mm, 点B 在双曲线kyx0x上, ∴49mkm. ∴492mmk. 【例2】 2010,丰台,一模 如图,一次函数1ykxb的图象与反比例函数2myx的图象相交于A、 B 两点. ( 1)求出这两个函数的解析式; ( 2)结合函数的图象回答:当自变量x的取值范围满足什么条件时,12yy BAOyx-2-6413 【思路分析】第一问直接看图写出A, B 点的坐标(-6,- 2) (4,3),直接代入反比例函数中求m,建立二元一次方程组求k,b。继而求出解析式。第二问通过图像可以直接得出结论。本题虽然简单,但是事实上却有很多变化。比如不给图像,直接给出解析式求12yy的区间,考生是否依然能反映到用图像来看区间。数形结合是初中数学当中非常重要的一个思想,希望大家要活用这方面的意识去解题。 【解析】 解:(1)由图象知反比例函数2myx的图象经过点B(4, 3), ∴34m. ∴ m=12. - ∴反比例函数解析式为212yx. 由图象知一次函数1ykxb的图象经过点A(- 6,-2) , B(4, 3), ∴6243.kbkb ...