坐标系单元教学设计甘肃省庆阳第四中学燕春录一、数学分析为了说明点的位置,运动的快慢、方向等,必须选取坐标系,在参照系中,为了确定点的位置,按照规定的方法选取的一组有序数对就叫做坐标。在这一问题中规定坐标的方法,就是该问题所用的坐标系。解析几何是数学的一个分支,其基本思想就是在平面上引进“坐标”的概念,建立平面上的点与坐标之间的对应关系,运用代数工具研究几何问题,它是数学的两个基本对象——数和形的统一。通过数形结合,使坐标法成为一个双面的工具,一方面,几何概念可以用代数表示,几何目标可以通过代数方法达到;另一方面,代数语言以几何解释,使代数语言更直观,更形象的表达出来。坐标法的思想促使人们运用各种代数的方法解决几何问题,这种方法具有“一般性”,它沟通了数学内部的数与形,代数与几何两大学科之间的联系,从此代数与几何相互汲取新鲜的活力,得到迅速的发展,并且为代数的证明提供了有力的证据,随着学习的不断深入,坐标法的应用更加广泛。坐标系是坐标法得以实现的平台,是解析几何的基础,学生学习平面直角坐标系、极坐标系、柱坐标系、球坐标系等不同的坐标系,可以丰富对坐标系的认识,体会不同坐标系在刻画几何图形或描述自然现象时的特点,从而学会如何选择适当的坐标系建立的方程更加简单,研究起来更加方便。二、课标分析1、回顾在平面直角坐标系中刻画点的位置的方法,体会坐标系的作用。2、通过具体的例子,了解在平面直角坐标系中伸缩变换下平面图形的变化情况。3、能在极坐标系中用极坐标刻画点的位置,体会在极坐标和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。4、能在极坐标系中给出简单图形(如过极点的圆、圆心在极点的圆、过极点的直线)的方程。通过比较这些图形在极坐标系中和直角坐标系中的方程,体会用方程刻画平面图形时选择适当坐标系的意义。5、借助具体实例,了解在柱坐标系、球坐标系中刻画空间中点的位置的方法,并与空间直角坐标系进行比较,体会它们的区别。三、学情分析(一)学生从初中开始学习坐标系,对平面直角坐标系有了较深刻的认识和理解,教学中就要把重点放在让学生理解不论在平面还是空间中点的位置都可以用有序数对来表示,在不同的坐标系中,这些数体现的意义不同,同一几何图形在不同的坐标系中的方程也不同,因此选择适当的坐标系可以使图形的方程更简单。在坐标系的教学中,说明坐标系建立的原则,要引导学生自己建立...