20 第三章 矩阵的初等变换与线性方程组 1.把下列矩阵化为行最简形矩阵: (1) 340313021201; (2) 174034301320; (3) 12433023221453334311; (4) 34732038234202173132. 解 (1) 3403130212011312)3()2(~rrrr020031001201 )2()1(32 ~rr01003100120123~rr 300031001201 33~r10003100120132 3~rr 1000010012013121)2(~rrrr100001000001 (2) 174034301320 1312)2()3(2~rrrr31003100132021233~rrrr000031001002021~r000031005010 (3) 12433023221453334311 141312323~rrrrrr1010500663008840034311)5()3()4(432 ~rrr22100221002210034311 242321 3~rrrrrr00000000002210032011 (4) 34732038234202173132 242321232~rrrrrr1187701298804202111110141312782~rrrrrr41000410002020111110 34221)1(~rrrrr0000041000111102020132~rr 00000410003011020201 21 2.设987654321100010101100001010A,求A。 解:A=11100010101987654321100001010=287221254 3.试利用矩阵的初等变换,求下列方阵的逆矩阵: (1) 323513123; (2) 1210232112201023. 解 (1)100010001323513123101011001200410123~...