1 追及问题 课时一 初步理解追及问题 一、导入 今天我们来学习行程问题当中的追及问题,它属于同向运动中的一种,下面我们就通过一个例子来给大家讲叙怎样解决追及问题。 例:兔子在狗前面150 米,一步跳2 米,狗更快,一步跳3 米,狗追上兔子需要跳多少步? 我们知道,狗跳一步要比兔子跳一步远3—2=1(米),也就是狗跳一步可以追上兔子1 米,现在狗与兔子相距150 米,因此,只要算出150 米中有几个1 米,那么就知道狗跳了多少步追上兔子的。不难看出150÷1=150(步),这是狗跳的步数。 这里兔子在前面跳,狗在后面追,它们一开始相差 150 米,这 150 米叫做“追及距离”;兔子每步跳2 米,狗每步跳3 米,它们每步相差1 米,这个叫“速度差”;狗追上兔子所需的步数叫做“追及步数”有时是以秒、分钟、小时计算,则叫“追及时间”,像这种包含追及距离、速度差和追及时间(追及步数)三个量的应用题,叫做追及问题。 二、新课讲授 1、速度差:快车比慢车单位时间内多行的路程。即快车每小时比慢车多行的或每分钟多行的路程。 追及时间:快车追上慢车所用的时间。 路程差:快车开始和慢车相差的路程。 2.熟悉追及问题的三个基本公式: 2 路程差=速度差×追及时间; 速度差=路程差÷追及时间; 追及时间=路程差÷速度差 3.解题技巧:在理解行驶时间、地点、方向等关系的基础上画出线段图,分析题意思,寻找路程差及另外两个量之间的关系,最终找到解答方法。 三、例题分析 例 1 甲、乙两人相距 150 米,甲在前,乙在后,甲每分钟走 60 米,乙每分钟走 75 米,两人同时向南出发,几分钟后乙追上甲? 思路分析:这道问题是典型的追及问题,求追及时间,根据追及问题的公式: 追及时间=路程差÷速度差 150÷(75-60)=10(分钟) 答:10 分钟后乙追上甲。 例 2 骑车人与行人同一条街同方向前进,行人在骑自行车人前面 3 450 米处,行人每分钟步行60 米,两人同时出发,3 分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米? 思路分析这道题目,是同时出发的同向而行的追及问题,要求其中某个速度,就必须先求出速度差, 根据公式:速度差=路程差÷追及时间: 速度差:450÷3=150(米) 自行车的速度: 150+60=210(米) 答:骑自行车的人每分钟行210 米。 例3 两辆汽车从A 地到B 地,第一辆汽车每小时行54 千米,第二辆汽车每小时行63 千米,第一辆汽车先行一会后,第...