1 哈佛大学能源与环境学院 课程作业报告 作业名称:传热学大作业——利用 matlab 程序解决热传导问题 院系:能源与环境学院 专业:建筑环境与设备工程 学号:******* 姓名:*** 2015 年 6 月 8 日 2 一、题目及要求 1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m℃)) 6. 计算结果的等温线图 7. 计算小结 题目:已知条件如下图所示: 二、各节点的离散化的代数方程 各温度节点的代数方程 ta=(300+b+e)/4 ; tb=(200+a+c+f)/4; tc=(200+b+d+g)/4; td=(2*c+200+h)/4 te=(100+a+f+i)/4; tf=(b+e+g+j)/4; tg=(c+f+h+k)/4 ; th=(2*g+d+l)/4 ti=(100+e+m+j)/4; tj=(f+i+k+n)/4; tk=(g+j+l+o)/4; tl=(2*k+h+q)/4 3 tm=(2*i+300+n)/24; tn=(2*j+m+p+200)/24; to=(2*k+p+n+200)/24; tp=(l+o+100)/12 三、源程序 【G-S迭代程序】 【方法一】 函数文件为: function [y,n]=gauseidel(A,b,x0,eps) D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)\U; f=(D-L)\b; y=G*x0+f; n=1; while norm(y-x0)>=eps x0=y; y=G*x0+f; n=n+1; end 命令文件为: A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0; -1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0; 0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0; 4 0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0; -1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0; 0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0; 0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0; 0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0; 0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0; 0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0; 0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0; 0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1; 0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0; 0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0; 0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1; 0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12]; b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]'; [x,n]=gauseidel(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6) xx=1:1:4; yy=xx; [X,Y]=meshgrid(xx,yy); Z=reshape(x,4,4); Z=Z' contour(X,Y,Z,30) Z = 139.6088 150.3312 153.0517 153.5639 5 108.1040 108.6641 108.3119 108.1523 84.1429 67.9096 63.3793 62.4214 20.1557 15.4521 14.8744 14.7746 【方法2】...