电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

函数单调性的习题及答案VIP免费

函数单调性的习题及答案_第1页
1/4
函数单调性的习题及答案_第2页
2/4
函数单调性的习题及答案_第3页
3/4
函数的单调性(一)一、选择题:1.在区间(0,+∞)上不是增函数的函数是()A.y=2x+1B.y=3x2+1C.y=D.y=2x2+x+12.函数f(x)=4x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f(1)等于()A.-7B.1C.17D.259.函数的递增区间依次是()A.B.C.D10.已知函数在区间上是减函数,则实数的取值范围是()A.a≤3B.a≥-3C.a≤5D.a≥310.已知函数的单调递减区间上是减函数,则实数的取值范围是()A.a≤3B.a≥-3C.a≤5D.a≥3二、填空题:13.函数y=(x-1)-2的减区间是____.14.函数y=x-2+2的值域为_____.15、设是上的减函数,则的单调递减区间为.16、函数f(x)=ax2+4(a+1)x-3在[2,+∞]上递减,则a的取值范围是__.三、解答题:17.f(x)是定义在(0,+∞)上的增函数,且f()=f(x)-f(y)(1)求f(1)的值.(2)若f(6)=1,解不等式f(x+3)-f()<2.18.函数f(x)=-x3+1在R上是否具有单调性?如果具有单调性,它在R上是增函数还是减函数?试证明你的结论.19.试讨论函数f(x)=在区间[-1,1]上的单调性.20.设函数f(x)=-ax,(a>0),试确定:当a取什么值时,函数f(x)在0,+∞)上为单调函数.21.已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,求实数m的取值范围.22.已知函数f(x)=,x∈[1,+∞](1)当a=时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围.参考答案一、选择题:CDBBDADCCABA二、填空题:13.(1,+∞),14.(-∞,3),15.,三、解答题:17.解析:①在等式中,则f(1)=0.②在等式中令x=36,y=6则故原不等式为:即f[x(x+3)]<f(36),又f(x)在(0,+∞)上为增函数,故不等式等价于:18.解析:f(x)在R上具有单调性,且是单调减函数,证明如下:设x1、x2∈(-∞,+∞),x1<x2,则f(x1)=-x13+1,f(x2)=-x23+1.f(x1)-f(x2)=x23-x13=(x2-x1)(x12+x1x2+x22)=(x2-x1)[(x1+)2+x22].∵x1<x2,∴x2-x1>0而(x1+)2+x22>0,∴f(x1)>f(x2).∴函数f(x)=-x3+1在(-∞,+∞)上是减函数.19.解析:设x1、x2∈-1,1]且x1<x2,即-1≤x1<x2≤1.f(x1)-f(x2)=-==∵x2-x1>0,>0,∴当x1>0,x2>0时,x1+x2>0,那么f(x1)>f(x2).当x1<0,x2<0时,x1+x2<0,那么f(x1)<f(x2).故f(x)=在区间[-1,0]上是增函数,f(x)=在区间[0,1]上是减函数.20.解析:任取x1、x2∈0,+且x1<x2,则f(x1)-f(x2)=--a(x1-x2)=-a(x1-x2)=(x1-x2)(-a)(1)当a≥1时,∵<1,又∵x1-x2<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2)∴a≥1时,函数f(x)在区间[0,+∞)上为减函数.(2)当0<a<1时,在区间[0,+∞]上存在x1=0,x2=,满足f(x1)=f(x2)=1∴0<a<1时,f(x)在[0,+上不是单调函数注:①判断单调性常规思路为定义法;②变形过程中<1利用了>|x1|≥x1;>x2;③从a的范围看还须讨论0<a<1时f(x)的单调性,这也是数学严谨性的体现.21.解析:∵f(x)在(-2,2)上是减函数∴由f(m-1)-f(1-2m)>0,得f(m-1)>f(1-2m)∴解得,∴m的取值范围是(-)22.解析:(1)当a=时,f(x)=x++2,x∈1,+∞)设x2>x1≥1,则f(x2)-f(x1)=x2+=(x2-x1)+=(x2-x1)(1-)∵x2>x1≥1,∴x2-x1>0,1->0,则f(x2)>f(x1)可知f(x)在[1,+∞)上是增函数.∴f(x)在区间[1,+∞上的最小值为f(1)=.(2)在区间[1,+∞上,f(x)=>0恒成立x2+2x+a>0恒成立设y=x2+2x+a,x∈1,+∞),由y=(x+1)2+a-1可知其在[1,+∞)上是增函数,当x=1时,ymin=3+a,于是当且仅当ymin=3+a>0时函数f(x)>0恒成立.故a>-3.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

函数单调性的习题及答案

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部