用正比例解决问题《用正比例解决问题》教学设计教学内容:《义务教育课程标准实验教科书数学》(人教版)六年级下册第三单元“用比例解决问题”P61 例 5 以及相应的练习。教材分析:用比例解决问题是人教版教材六年级下册第三单元“比例”中一个重要的学习内容,是学生解决问题思路的拓宽。这一内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,主要学习用比例知识来解答含正、反比例的问题,从而加深对正、反比例意义的理解,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做准备。用比例解决问题这一内容教材中安排了两个例题,一个是例5,是一道用正比例知识解答的应用题;另一个是例6,是一道用反比例知识解答的应用题。教材要求通过联系算术解法,使学生了解用正比例关系解答的应用题,就是以前学过的“归一应用题”,用反比例关系解答的应用题,就是以前学过的“归总应用题”,这两题都可以用算术法解答(本节课只教学例5)。学情分析:学生在学习这部分知识之前,已经认识了正比例的意义和反比例的意义,会判断生活中含有正、反比例意义的数量关系,也在前几年的学习中,已接触过这种情况的问题,只是用归一法来解答,没有上升到一般规律。所以,在教学上要十分重视从旧知识引申出新知识,为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答:要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,然后再设未知数,列出等式(方程)解答。设计理念:学习数学,不能仅仅停留在掌握知识的层面上,而必须学会应用。在学习本节课之前,生活中的一些数量关系,学生用自己的知识已经会解决了。本节课要让学生用另一种数学眼光,从比例知识的角度寻找一种新的解决这种特殊数量关系的方法,从而丰富学生解决问题的策略,加强数学应用意义的培养。课前,我思考最多的问题就是:如何让学生体会到用比例解决问题的优越性?在本节课的教学设计和实践上,我力图通过两个环节来解决这个问题。第一个环节是:回忆旧知的时候让学生根据四个数据列出不同的比例,教学例 5 的时候让学生列出多个比例,以此让学生体验用正比例解决问题时有着一定的“模型”——只要找到相对应的两个量进行比就可以了。第二个环节是:通过例5 的学习后,让学生来反思学习过程,从而提出疑问:为什么学习了算术方法,还要学习用比例解?接着组织学生讨论:“用算术”和“用比例”解...