《直线与平面垂直的判定》教学设计一、内容和内容解析本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,其主要内容是直线与平面垂直的定义、 直线与平面垂直的判定定理及其应用。直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中直线与直线垂直位置关系的拓展, 又是平面与平面垂直的基础, 是空间中垂直位置关系间转化的重心,同时它又是直线和平面所成的角、直线与平面、平面与平面距离等内容的基础,因而它是空间点、直线、平面间位置关系中的核心概念之一。直线与平面垂直是通过直线和平面内的任意一条直线(无一例外)都垂直来定义的, 定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面, 那么这条直线就垂直于这个平面内的所有直线,这也可以看成是线线垂直的一个判定方法;直线与平面垂直的判定定理, 本节是通过折纸试验来感悟的,即一条直线只要与平面内的两条相交直线垂直就可以判定直线与平面垂直了,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了,概言之,线不在多,相交就行。直线与平面垂直的判定方法除了定义法、 判定定理外, 还有如果两条平行直线中的一条直线垂直于一个平面, 那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的。本节学习内容蕴含丰富的数学思想,即“空间问题转化为平面问题”,“无限转化为有限”“线线垂直与线面垂直互相转化”等数学思想。直线与平面垂直是研究空间中的线线关系和线面关系的桥梁,为后继面面垂直的学习、距离的学习奠定基础。二、学情分析(1)学生的起点能力分析学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象(学生的客观现实)和直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构(学生的数学现实),这为学生学习直线与平面垂直定义和判定定理等新知识奠定基础。学生学习的困难在于如何从直线与平面垂直的直观形象中提炼出直线与平面垂直的定义, 感悟直线与平面垂直的意义; 以及如何从折纸试验中探究出直线与平面垂直的判定定理。(2)学习行为分析本节课安排在立体几何的初始阶段,是学生空间观念形成的关键时期,课堂上学生通过感知、观察、提炼直线与平面垂直的定义,进而通过辨析讨论,深化对定义的理解。进一步,在一个具体的数学问题情境中猜想直线与平面垂直...