文档高等数学公式一、常用的等价无穷小当 x →0 时x~sin x~tan x~arcsin x~arctan x~ln(1+ x )~ ex -1 ax-1~ x ln a (1+ x )α -1 ~ α x(α 为任意实数,不一定是整数) 1-cosx ~ 21 x 2 增加x-sin x~ 61 x 3对应arcsin x – x~ 61 x 3 tan x – x ~ 31 x 3 对应x - arctan x ~ 31 x 3 二、利用泰勒公式ex = 1 + x + !22xo(2x )) (33o!3sinxxxx文档cosx= 1 –!22xo(2x )ln(1+ x )= x –22xo(2x )导数公式:基本积分表:三角函数的有理式积分:222212211cos12sinududxxtguuuxuux, , , axxaaactgxxxtgxxxxctgxxtgxaxxln1)(logln)(csc)(cscsec)(seccsc)(sec)(22222211)(11)(11)(arccos11)(arcsinxarcctgxxarctgxxxxxCaxxaxdxCshxchxdxCchxshxdxCaadxaCxctgxdxxCxdxtgxxCctgxxdxxdxCtgxxdxxdxxx)ln(lncsccscsecseccscsinseccos22222222CaxxadxCxaxaaxadxCaxaxaaxdxCaxarctgaxadxCctgxxxdxCtgxxxdxCxctgxdxCxtgxdxarcsinln21ln211csclncscseclnsecsinlncosln22222222CaxaxaxdxxaCaxxaaxxdxaxCaxxaaxxdxaxInnxdxxdxInnnnarcsin22ln22)ln(221cossin222222222222222222222020文档一些初等函数:两个重要极限:三角函数公式:· 诱导公式:函数角 A sin cos tg ctg -α-sin αcos α-tg α-ctg α90°-αcos αsin αctg αtg α90°+αcos α-sin α-ctg α-tg α180°-αsin α-cos α-tg α-ctg α180°+α-sin α-cos αtg αctg α270°-α-cos α-sin αctg αtg α270°+α-cos αsin α-ctg α-tg α360°-α-sin αcos α-tg α-ctg α360°+αsin αcos αtg αctg α· 和差角公式:· 和差化积公式:· 倍角公式:2sin2sin2coscos2cos2cos2coscos2sin2cos2sinsin2cos2sin2sinsinctgctgctgctgctgtgtgtgtgtg1)(1)(sinsincoscos)cos(sincoscossin)sin(xxarthxxxarchxxxarshxeeeechxshxthxeechxeeshxxxxxxxxx11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim1sinlim0exxxxxx文档· 半角公式:cos1sinsincos1cos1cos12cos1sinsincos1cos1cos122cos12cos2cos12sinctgtg · 正弦定理:RCcBbAa2sinsinsin· 余弦定理:Cabbaccos2222· 反三角函数性质:arcctgxarctgxxx2arccos2arcsin 高阶导数公式——莱布尼兹(Leibniz)公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n...