电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

曲线拟合和插值

曲线拟合和插值_第1页
1/15
曲线拟合和插值_第2页
2/15
曲线拟合和插值_第3页
3/15
第11章 曲线拟合与插值 在大量的应用领域中,人们经常面临用一个解析函数描述数据(通常是测量值)的任务。对这个问题有两种方法。在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。这种方法在下一节讨论。这里讨论的方法是曲线拟合或回归。人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。图 11.1 说明了这两种方法。标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。 11.1 曲线拟合 曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。数学上,称为多项式的最小二乘曲线拟合。如果这种描述使你混淆,再研究图 11.1。虚线和标志的数据点之间的垂直距离是在该点的误差。对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。最小二乘这个术语仅仅是使误差平方和最小的省略说法。 00.20.40.60.81-2024681012xy=f(x)Second Order Curve Fitting 图 11.1 2 阶曲线拟合 在MATLAB 中,函数poly fit 求解最小二乘曲线拟合问题。为了阐述这个函数的用法,让我们以上面图 11.1 中的数据开始。 » x =[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; » y =[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; 为了用poly fit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。如果我们选择 n=1 作为阶次,得到最简单的线性近似。通常称为线性回归。相反,如果我们选择 n=2 作为阶次,得到一个 2 阶多项式。现在,我们选择一个 2 阶多项式。 » n=2; % polynomial order » p=polyfit(x, y, n) p = -9.8108 20.1293 -0.0317 polyfit 的输出是一个多项式系数的行向量。其解是 y = -9.8108x2 +20.1293x-0.0317。为了将曲线拟合解与数据点比较,让我们把二者都绘成图。 » xi=linspace(0, 1, 100); % x-axis data for plotting » z=polyval(p, xi); 为了计算在 xi 数据点的多项式值,调用 MATLAB 的函数 polyval。 » plot(x, y, ' o ' , x...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

曲线拟合和插值

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部