BIPV 简介 光伏建筑一体化(BIPV)技术即将太阳能发电(光伏)产品集成到建筑上的技术,其不但具有外围护结构的功能,同时又能产生电能供建筑使用。一般来说将太阳电池组件安装在住房或建筑物的屋顶,引出端经过控制器及逆变器与公共电网连接,由光伏方阵及电网并联向用户供电,这就组成了户用并网光伏系统。它具有调峰、环保的功能。另外也可以用太阳光伏发电的玻璃幕墙代替普通的幕墙玻璃,这样即可以做建材又可以发电,进一步降低光伏发电的成本,非常独特,成为城市里一道美丽的风景线。也可以直接用电池组件做建筑材料。比如说将单晶、多晶封装到瓦状的电池板中,用来做屋顶。 BIPV 系统按照光伏系统和建筑结合形式主要可以分为:( 1)光伏屋顶结构(PV-ROOF),太阳能屋顶发电,在整个BIPV 中,屋顶发电占3/4。这主要是因为屋顶有更多受光面积, 方便太阳电池组件的安装;( 2)光伏幕墙结构( PV-WALL),现代高层建筑,几乎都是被玻璃幕墙,或者铝塑幕墙所包裹。所以用太阳能幕墙代替原来的幕墙已经成为BIPV 的一道亮丽的风景线。BIPV 系统一般由光伏阵列(太阳电池组件)、墙面或屋顶和冷却空气通道、支架等组成,可以作为独立电源供电或者以并网的方式供电。因而是光伏发电步入商业应用并逐步发展成为基本电源之一的重要方式。 光电玻璃幕墙可广泛用于建筑物的遮阳系统、建筑物幕墙、光伏屋顶、光伏门窗等光伏发电。也可用于边远山区居民、交通、通信、气象、军事等部门,如电视转播站、卫星地面站、微波中继站、公路及铁路信号灯、农用光伏系统、航标灯、灯塔等。建筑能耗大约占各国总能耗的1/3,光伏与建筑结合可以有效地减少建筑能耗,不论从建筑、技术或经济角度出发,太阳能光伏与建筑一体化均有诸多优点:( 1)可以有效利用围护表面(屋顶和墙面),无需额外用地或加建其他设施,节省了土地资源这对于人口密集、土地昂贵的城市建筑有尤为重要;( 2)可原地发电、原地使用,可节约电站送电网的投资和减少输电、分电损耗;( 3)通常夏季由于空调、制冷等设备的使用,形成用电高峰,而这时也是光伏方阵发电最多的时期,BIPV 系统除保证自身建筑内用电外,还可以向电网供电,从而舒缓高峰电力需求,解决电网峰谷供需矛盾,具有极大的社会效益;( 4)由于光伏阵列安装在屋顶和墙面上,并直接吸收太阳能,避免了墙面温度和屋顶温度过高,因此可以改善室内温度,并且降低空调负荷;( 5)利用太阳能光伏发电减少了一般...