电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

代数方程解法

代数方程解法_第1页
1/7
代数方程解法_第2页
2/7
代数方程解法_第3页
3/7
1 代数方程 解法 化归思想:高次化低次:降次的方法:因式分解,换元 分式化整式:化整式的方法:去分母,换元 无理化有理:化有理方程的方法:平方法,换元 多元化一元:代入和加减消元 1.一元一次方程和一元二次方程的解法 一元二次方程的解法主要有四种: (1)直接开平方法: 适用于(mx+n)2=h (h≥0)的一元二次方程。 (2)配方法: 适用于所有化为一般形式后的一元二次方程。但是,具有二次项系数为 1,一次项系数为偶数特点的一元二次方程,用配方法解才较简便。 配方法是通过配方将一元二次方程化成(mx+n)2=h (h≥0)的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法。 其基本步骤是: ①首先在方程两边同除以二次项系数,把二次项系数化为 1; ②把常数项移到等式的右边; ③方程两边同时加上一次项系数一半的平方; ④方程左边写成完全平方式,右边化简为常数; ⑤利用直接开平方法解此方程 用配方法解一元二次方程要注意,当二次项系数不为 1 时,一定要化为 1,然后才能方程两边同时加上一次项系数一半的平方 (3)公式法: 适用于解一般形式的一元二次方程。利用公式042422acbaacbbx可以解所有的一元二次方程。 2 注意:当b2-4ac≥0 时,方程才有实数解;当b2-4ac<0 时,原方程无实数解。 (4)因式分解法: 适用于方程右边是0,左边是易于分解成两个一次因式乘积的一元二次方程。 2.含字母系数的整式方程的解法 3.特殊的高次方程的解法 (1)二项方程)0,0(0babaxn的解法 二项方程的定义: 如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另外一边是零,那么这样的方程叫做二项方程。 关于x 的一元n 次二项方程的一般形式是 ),0,0(0是正整数nbabaxn 二项方程的解法及根的情况: 一般地,二项方程)0,0(0babaxn可变形为 abxn 可见,解一元n 次二项方程,可以转化为求一个已知数的n 次方根,运用开方运算可以求出这个方程的根。 二项方程的根的情况: 对于二项方程)0,0(0babaxn, 当n 为奇数时,方程只有且只有一个实数根。 当n 为偶数时,如果0ab,那么方程有两个实数根,且这两个实数根互为相反数;如果0ab,那么方程没有实数根。 (3)因式分解法解高次方程 解高于一次的方程,基本思想就是是“降次”,对有些高次方程,可以用因式分解的方法降次。 用因式分解的方法时要注意...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

代数方程解法

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部