同角三角函数的基本关系 1.教学目标 知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:1)已知一个角的一个三角函数值能求这个角的其他三角函数值;2)证明简单的三角恒等式。 过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。 情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。 2.教学重点和难点 重点:同角三角函数基本关系式的推导及应用。 难点: 同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。 三、学情分析 学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热 情高涨 。 四 、教法分析与学法分析 1.教法分析:采 取诱 思探究性 教学方法,在教学中提出问题,创 设 情景 引 导学生主动观察、思考 、类 比 、讨论、总 结、证明,让学生做 学习的主 人 ,在主 动探究中汲 取知识,提高能力。 2.学法分析:从 学生原 有的知识和能力出发 ,在教师 的带 领 下 ,通过合作 交 流 ,共 同探索,逐 步 解决问题.数学学习必 须 注 重概 念 、原 理、公式、法则 的形成 过程,突 出数学本质 。 五 、教学过程设 计 (一)创 设 情境 引 入 课 题 ________3tan_;__________3cos3sin________;3cos3sin3________4tan_;__________4cos4sin________;4cos4sin2________6tan_;__________6cos6sin_________;6cos6sin1.1222222(((,,猜想它们之间的联系观察它们的关系完成填空 设计意图:从具体到抽象,引导学生完成抽象与具体之间的相互转换 2.思考: 问题1:从以上的过程中,你能发现什么一般规律? 问题2:你能否用代数式表示这两个规律? 设计意图:引导学生用特殊到一般的思维来处理问题,通过观察思考,感知同角三角函数的基本关系。 (二)自主学习 推导公式 1.证明公式:(同角三角函数基本关系) (1)、平方关系:1cossin22...