高三文科数学数列单元检测题班级___________姓名_______________总分_______________一、选择题:(每小题6分,共42分)1.等差数列的前三项为x-1,x+1,2x+3,则这个数列的通项公式为()A.an=2n-5B.an=2n-3C.an=2n-1D.an=2n+12.已知等比数列{an}的前n项和为Sn=a·2n-1+,则a的值为()A.-B.C.-D.3.设平面向量a=(-2,1),b=(λ,-1),若a与b的夹角为钝角,则λ的取值范围是()A.),2()2,21(B.(2,+∞)C.(21,+∞)D.(-∞,21)4.在等比数列{an}中,如果a1+a4=18,a2+a3=12,那么这个数列的公比为()A.2B.C.2或D.-2或5.已知正数组成的等比数列{an},若a1·a20=100,那么a7+a14的最小值为()A.20B.25C.50D.不存在6.数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则的值为()A.B.C.D.7.已知Sn是等比数列{an}的前n项和,若存在m∈N*,满足=9,=,则数列{an}的公比为()A.-2B.2C.-3D.3★友情提示:请将选择题的答案填到下列表格中:(每小题6分,共42分)题号1234567答案二、填空题:(每小题6分,共24分)8.数列{an}满足:a1+3a2+5a3+…+(2n-1)·an=(n-1)·3n+1+3(n∈N*),则数列{an}的通项公式an=________.9.已知数列{an}中,a1=1,若an=2an-1+1(n≥2),则a5的值是________.10.已知数列{an}的前n项和Sn=3-3×2n,n∈N*,则an=________.11.等比数列{an}满足an>0,n∈N*,且a3·a2n-3=22n(n≥2),则当n≥1时,log2a1+log2a2+…+log2a2n-1=________.三、解答题:(12题12分,13题12分,14题10分)12.已知:数列{an}满足a1=1,an=(n∈N*,n≥2),数列{bn}满足关系式bn=(n∈N*).(1)求证:数列{bn}为等差数列;(2)求数列{an}的通项公式.13.已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.(1)求数列{an};(2)求数列{bn}的通项公式;14.已知数列{an}满足2an+1=an+an+2(n∈N*),它的前n项和为Sn,且a3=10,S6=72,若bn=an-30,设数列{bn}的前n项和为Tn,求Tn的最小值.高三文科数学数列单元检测题(答案)使用时间2017.9.161.解析:选B 等差数列{an}的前三项为x-1,x+1,2x+3,∴2(x+1)=(x-1)+(2x+3),解得x=0.∴a1=-1,a2=1,d=2,故an=-1+(n-1)×2=2n-3.2.解析:选A当n≥2时,an=Sn-Sn-1=a·2n-1-a·2n-2=a·2n-2,当n=1时,a1=S1=a+,∴a+=,∴a=-.3.A4.解析:选C设数列{an}的公比为q,由=====,得q=2或q=.5.解析:选A(a7+a14)2=a+a+2a7·a14≥4a7a14=4a1a21=400.∴a7+a14≥20.6.解析:选C因为1,a1,a2,9是等差数列,所以a1+a2=1+9=10.又1,b1,b2,b3,9是等比数列,所以b=1×9=9,易知b2>0,所以b2=3,所以=.7.解析:选B设公比为q,若q=1,则=2,与题中条件矛盾,故q≠1. ==qm+1=9,∴qm=8.∴==qm=8=,∴m=3,∴q3=8,二、填空题8.解析:a1+3a2+5a3+…+(2n-3)·an-1+(2n-1)·an=(n-1)·3n+1+3,把n换成n-1得,a1+3a2+5a3+…+(2n-3)·an-1=(n-2)·3n+3,两式相减得an=3n.答案:3n9.解析: an=2an-1+1,∴an+1=2(an-1+1),∴=2,又a1=1,∴{an+1}是以2为首项,2为公比的等比数列,即an+1=2×2n-1=2n,∴a5+1=25,即a5=31.答案:3110.解析:分情况讨论:①当n=1时,a1=S1=3-3×21=-3;②当n≥2时,an=Sn-Sn-1=(3-3×2n)-(3-3×2n-1)=-3×2n-1.综合①②,得an=-3×2n-1.答案:-3×2n-111.解析:由等比数列的性质,得a3·a2n-3=a=22n,从而得an=2n.∴log2a1+log2a2+…+log2a2n-1=log2[(a1a2n-1)·(a2a2n-2)·…·(an-1an+1)an]=log22n(2n-1)=n(2n-1)=2n2-n.答案:2n2-n三、解答题12.解:(1)证明: bn=,且an=,∴bn+1===,.................................................2∴bn+1-bn=-=2............................................................5又b1==1,∴数列{bn}是以1为首...