1.3《三角函数的诱导公式》教学案整体设计教学分析本节主要是推导诱导公式二、三、四,并利用它们解决一些求解、化简、证明问题.本小节介绍的五组诱导公式在容上既是公式一的延续,又是后继学习容的根底,它们与公式一组成的六组诱导公式,用于解决求任意角的三角函数值的问题以及有关三角函数的化简、证明等问题.在诱导公式的学习中,化归思想贯穿始末,这一典型的数学思想,无论在本节中的分析导入,还是利用诱导公式将求任意角的三角函数值转化为求锐角的三角函数值,均清楚地得到表达,在教学中注意数学思想渗透于知识的传授之中,让学生了解化归思想,形成初步的化归意识,特别是在本课时的三个转化问题引入后,为什么确定180°+α角为第一讨论对象,-α角为第二讨论对象,正是化归思想的运用.公式二、公式三与公式四中涉及的角在本课的分析导入时为不大于90°的非负角,但是在推导中却把α拓广为任意角,这一思维上的转折使学生难以理解,甚至会导致对其必要性的疑心,因此它成为本课时的难点所在.课本例题实际上是诱导公式的综合运用,难点在于需要把所求的角看成是一个整体的任意角.学生第一次接触到此题型,思维上有困难,要多加引导分析,另外,诱导公式中角度制亦可转化为弧度制,但必须注意同一个公式中只能实行一种制度,因此要加强角度制与弧度制的转化的练习.三维目标1.通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程培育学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想.2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用.3.进一步领悟把未知问题化归为问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力.重点难点教学重点:五个诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等.教学难点:六组诱导公式的灵活运用.课时安排2课时教学过程第1课时导入新课思路1.①利用单位圆表示任意角的正弦值和余弦值.②复习诱导公式一及其用途.思路2.在前面的学习中,我们知道终边一样的角的同名三角函数值相等,即公式一,并且利用公式一可以把绝对值较大的角的三角函数转化为0°到360°(0到2π)的角的三角函数值,求锐角三角函数值,我们可以通过查表求得,对于90°到360°(到2π)围的角的三角函数怎样求解,能不能有像公式一那样的公式把它们转化到锐角围来求解,这一节就来探讨这...