学士学位毕业论文设计数列收敛的判别法 所在系别:数学与应用数学系 专 业:数学与应用数学目录中文摘要--------------------------------------------------------------------I英文摘要-------------------------------------------------------------------II前 言------------------------------------------------------------------III第一章数列极限的概念--------------------------------------------------------11.1数列极限的定义-------------------------------------------------------11.2 收敛数列的定义-------------------------------------------------------2第二章判别数列收敛的方法----------------------------------------------------3 2.1定义法---------------------------------------------------------------3 2.2 单调有界定理---------------------------------------------------------6 2.3迫敛性定理-----------------------------------------------------------8 2.4 柯西收敛准则---------------------------------------------------------9 2.5 关于子列的重要定理--------------------------------------------------12参考文献-------------------------------------------------------------------14致-----------------------------------------------------------------------15数列收敛的判别法摘要:数列收敛是极限方法的基本情况,而极限方法是微积分学的基本方法,是初等数学所没有的一套崭新的方法,它解决了“直与曲”、“均匀变化与非均匀变化”、“近似于精确”的矛盾,是客观世界中由量变到质变的一种反应。数列收敛恰是这些的基础,它的概念、 性质、定理、推论为讨论其它极限等数学理论讨论起到铺垫作用。本篇文章重点讨论的是判别数列收敛的一些方法,对于推断一个数列是否收敛有些茫然的人,本文会有针对性的对以上问题做细致的讲解和归纳。开篇第一章的容是对一些基础概念做了叙述,以便于对后面的定理有更好的理解。在第二章重点介绍了判别数列收敛的方法,数列收敛的判别法有很多,对于简单的数列,通过定义其极限的存在常常可以通过观察直接看出,或通过极限的四则运算得出,讨论数列收敛的判别法可以推断一些较复杂的极限,例如应用柯西收敛准则和迫敛性定理,它们是利用极限来讨论微分学的许多理论问题时的有力工具,在近代分析中有极其重要的理论意义。关键词...